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Abstract
Generalized Linear Bandits (GLBs) are powerful extensions to the Linear Bandit (LB) setting,
broadening the benefits of reward parametrization beyond linearity. In this paper we study GLBs
in non-stationary environments, characterized by a general metric of non-stationarity known as
the variation-budget or parameter-drift, denoted BT . While previous attempts have been made to
extend LB algorithms to this setting, they overlook a salient feature of GLBs which flaws their
results. In this work, we introduce a new algorithm that addresses this difficulty. We prove that it
enjoys a Õ(d2/3B

1/3
T T 2/3) regret-bound, matching (up to logarithmic factors) the minimax lower-

bound established for LB. At the core of our contribution is a generalization of the projection step
introduced in Filippi et al. (2010), adapted to the non-stationary nature of the problem. Our analysis
sheds light on central mechanisms inherited from the setting by explicitly splitting the treatment of
the learning and tracking aspects of the problem.
Keywords: Stochastic Bandits, Generalized Linear Model, Non-Stationarity.

Introduction

Linear Bandits and non-stationarity. The Linear Bandit (LB) framework has proven to be an
important paradigm for sequential decision making under uncertainty. It notably extends the Multi-
Arm Bandit (MAB) framework to address the exploration-exploitation dilemma when the arm-set is
large (potentially infinite) or changing over time. While the LB has now been extensively studied
(Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Abeille
and Lazaric, 2017) in its original formulation, a recent strand of research studies its adaptation to
non-stationary environments. Notable are the contributions of Cheung et al. (2019b); Russac et al.
(2019); Zhao et al. (2020) which prove that under appropriate algorithmic changes, existing LB
concepts can be leveraged to handle a drift of the reward model. Aside their theoretical interests,
these results further anchor the spectrum of potential applications of the LB framework to real-world
problems, where non-stationarity is commonplace.
∗ Equal contribution.
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Extensions to Generalized Linear Bandits. Perhaps the main limitation of LB resides in its
inability to model specific (e.g binary, discrete) rewards. One axis of research to operate beyond
linearity was initiated with the introduction of Generalized Linear Bandit (GLBs) by Filippi et al.
(2010). This framework allows to handle rewards which (in expectation) can be expressed as a
generalized linear model. Notable members of this family are the logistic and Poisson models. Given
the remarkable importance and widespread use of such models in practice, ensuring their resilience
to non-stationarity stands as a crucial missing piece. At first glance, as the analysis of GLBs mainly
relies on tools from the LB literature, one could expect this demonstration to be straight-forward,
and almost anecdotal. As a matter of fact, the treatment of GLBs in non-stationary environments
was already proposed as a direct extension of non-stationary LB algorithms ((Cheung et al., 2019a,
Section 8.3) and (Zhao et al., 2020, Section 5.2)). However, as recently pointed out by Russac
et al. (2020a), some crucial subtleties of the GLBs flaw the analysis and negates the validity of such
extensions. An answer to this issue was brought by Russac et al. (2020a) who proposed a valid
analysis for GLBs in non-stationary environments. However, their investigation is restricted to a
specific kind of non-stationarity known as abrupt changes, leaving the treatment of the superior
parameter-drift case for future work. To the best of our knowledge, a correct derivation of GLBs’
behavior under this more general description of non-stationarity is still missing.

Scope and contributions. We focus in this paper on closing this gap. Our main contribution is
(1) the design of BVD-GLM-UCB (Algorithm 1), the first GLB algorithm resilient to parameter-drift
and matching the minimax rates of non-stationary LB (Theorem 1). This result relies on (2) a
generalization of the projection step of Filippi et al. (2010) to non-stationary environments, of similar
complexity than its stationary counterpart (Proposition 1). Our analysis (3) sheds light on some
salient mechanisms of non-stationary bandits.

1. Preliminaries

We consider in this work the stochastic contextual bandit setting under parameter-drift. The environ-
ment starts by picking a sequence of parameters {θt?}∞t=1. A repeated game then begins between the
environment and an agent. At each round t, the environment presents the agent with a set of actions
Xt (potentially contextual, large or even infinite). The agent selects an action xt ∈ Xt and receives a
(stochastic) reward rt+1. In this paper we work under the fundamental assumption that there exists a
structural relationship between actions and their associated reward in the form of:

E [rt+1 | Ft, xt] = µ
(
〈xt, θt?〉

)
. (1)

The filtration Ft := σ({xs, rs+1}t−1
s=1) represents the information acquired at round t, and µ is a

strictly increasing, continuously differentiable real-valued function most often referred to as the
inverse link function. Notable instances of such a problem include the logistic bandit and the Poisson
bandit. The goal of the agent is to minimize the cumulative pseudo-regret:

RT :=
T∑
t=1

µ(〈xt?, θt?〉)− µ(〈xt, θt?〉) where xt? = arg max
x∈Xt

µ(〈x, θt?〉) .

We make the following assumption common in the study of parametric bandits:

Assumption 1 (Bounded decision set) For all t ≥ 1, the following holds true:
∥∥θt?∥∥2

≤ S. Further,
the actions have bounded norms: ‖x‖2 ≤ L for all x ∈ Xt.
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Assumption 2 (Bounded reward) There exists σ > 0 s.t 0 ≤ rt ≤ 2σ holds almost surely.

We will denote Θ = {θ, ‖θ‖2 ≤ S} the set of admissible parameters and X = {x, ‖x‖2 ≤ L}. We
assume that the quantities L, S and σ are known to the agent. The true parameters {θt?}∞t=1 are
unknown, and their drift is quantified by the variation variation-budget, which characterizes the
magnitude of the non-stationarity in the environment:

BT,? :=
T−1∑
t=1

∥∥θt+1
? − θt?

∥∥
2
.

Naturally BT,? is unknown. For the sake of simplicity and to isolate the main contribution of this
paper (i.e minimax-optimality in non-stationary GLBs), we will make the following assumption.

Assumption 3 (Variation-budget upper-bound) BT is a known quantity such that BT ≥ BT,?.

This assumption is common in non-stationary bandits (Besbes et al., 2014; Cheung et al., 2019a;
Zhao et al., 2020). We will show in Section 3.4 how to bypass it with little to no impact on the regret.
For a given inverse link function µ, we will follow the notation from Filippi et al. (2010) and denote:

kµ = sup
x∈X ,θ∈Θ

µ̇ (〈x, θ〉) , cµ = inf
x∈X ,θ∈Θ

µ̇ (〈x, θ〉) , Rµ = kµ/cµ .

As in the stationary setting, learning can be canonically performed through the quasi-maximum
likelihood principle, albeit with adequate modifications. Let b be a primitive of µ. Thanks to the strict
increasing nature of the latter, b is a strictly convex function. Let λ > 0 and for γ ∈ (0, 1) define1:

θ̂t = arg min
θ∈Rd

t−1∑
s=1

γt−1−s [b(〈xs, θ〉)− rs+1〈xs, θ〉] +
λcµ
2
‖θ‖22 , (2)

which is well-defined and unique as the minimizer of a strictly convex and coercive function. Further:

gt(θ) :=
t−1∑
s=1

γt−1−sµ(〈xs, θ〉)xs + λcµθ.

Finally, we will use Vt :=
∑t−1

s=1 γ
t−1−sxsx

T
s + λId and Ṽt :=

∑t−1
s=1 γ

2(t−1−s)xsx
T
s + λId.

2. Related work: limitations and challenges

2.1. GLBs and non-stationary LB

GLBs were first introduced by Filippi et al. (2010) who studied optimistic algorithms which enjoy a
Õ(Rµd

√
T ) regret upper-bound, later refined for K-arms problem to Õ(Rµ

√
d log(K)T ) (Li et al.,

2017). These findings were extended to randomized algorithms, both in the frequentist (Abeille and
Lazaric, 2017) and Bayesian setting (Russo and Van Roy, 2014; Dong and Van Roy, 2018). GLBs
also received an increasing attention targeted at improving their practical implementations (Jun et al.,
2017; Dumitrascu et al., 2018).

1. We follow Russac et al. (2019) and use an exponential moving-average strategy. Our contribution is not specific to this
approach and can easily be extended to other alternatives, e.g the sliding window.
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The effects of parameter-drift were first studied in the MAB setting by Besbes et al. (2014) who
for K-arm MAB achieved a dynamic regret bound of Õ(K1/3B

1/3
T T 2/3). Such results were recently

extended to the stochastic LB: Cheung et al. (2019b) developed dynamic policies by resorting
to a sliding-window, Russac et al. (2019) introduced a similar approach based on an exponential
moving average, and Zhao et al. (2020) advocated for a simpler restart-based solution. All three
aforementioned approaches enjoy regret bounds of the form Õ(d2/3B

1/3
T T 2/3), matching the lower-

bound of Cheung et al. (2019a) up to logarithmic factors. Under the more specific assumption of
abruptly-changing environments (also known as switching or piece-wise stationary bandits), regret
bounds have been refined to Õ

(√
ΓTT

)
in the MAB setting (Garivier and Moulines, 2011), where

ΓT is an upper bound on the number of switches.

2.2. Toward non-stationary GLBs: limitations

On the limits of piece-wise stationarity. To the best of our knowledge, the first valid analysis of
non-stationary GLBs was conducted by Russac et al. (2020a). However, their work is restricted to
piece-wise stationary environments, characterized by the number ΓT of switches of the reward signal.
On the practical side, this drastically narrows down the non-stationary scenarios that can be efficiently
addressed, as the measure ΓT can grossly overestimate the importance of the non-stationarity. In
such case, any algorithm based on this measure will be sub-optimal and discard too fast previous
data, quickly judged uninformative since the level of non-stationarity is expected to be high. This is
typically the case in environments with many switches of small amplitude, characteristic of smooth
drifts (e.g user-fatigue in recommender systems). On the theoretical side, this approach tells us little
about the difficulties and challenges brought by the non-stationarity, as it relies on the fact that far
enough from a switch, the environment is stationary. On the contrary, the variation-budget metric
BT introduced and discussed in Besbes et al. (2014, Section 2), allows for much finer considerations.
It stands as a powerful characterization of the non-stationarity, measuring the number of switches
and their amplitude jointly. As a result, it can efficiently cover different scenarios, from drifting
to piece-wise stationary environments. An adequate treatment of GLBs under this superior metric
is therefore a crucial missing piece, and requires a sensibly different analysis and an appropriate
algorithmic design.

Parameter-drift and GLBs: flaws of previous approaches. Most of the existing non-stationary
LB algorithms address the parameter-drift setting and their extension to GLBs was at first considered
as relatively straight-forward (Cheung et al., 2019a; Zhao et al., 2020). Unfortunately, existing
analyses suffer from important caveats because they overlook a crucial feature of GLBs. Following
Filippi et al. (2010), they rely on a linearization of the reward function around θ̂t. Naturally, the linear
approximation must accurately describe the effective behavior of the reward signal (characterized by
the ground-truth θt?). From Assumption 2, this translates in the structural constraint θ̂t ∈ Θ, which is
implicitly assumed to hold in previous attempts. Unfortunately, there exists no proof guaranteeing
that θ̂t ∈ Θ could hold. Even worse, existing deviation bounds (Abbasi-Yadkori et al., 2011, Theorem
1) rather suggest that in some directions, even in the stationary case, θ̂t can grow to be

√
log(t) far

from Θ! The situation is even worse under non-stationarity since, as we shall see, θ̂t can be Bt far
from Θ. This flaw in the analysis is critical and cannot be easily fixed without severely degrading the
regret guarantee. When θ̂t /∈ Θ, this impacts the ratio Rµ which captures the degree of non-linearity
of the inverse link function. For the highly non-linear logistic function, easy computations show
that Rµ ≥ eSL. If we were to inflate the radius of the admissible set Θ from S to S + δS (so that it
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contains θ̂t), the estimated non-linearity of the reward function would be even stronger and Rµ would
be multiplied by a factor eLδS ! Because the regret bound scales linearly with Rµ, this exponential
growth would lead to prohibitively deficient performance guarantees.

Remark 1 The fact that θ̂t can leave the admissible set Θ is not merely a theoretical construction
inherited from potentially loose deviation bounds. As highlighted in Figure 2(b), we can see in our
numerical simulations that this often happens in practice when the environment is non-stationary.

2.3. Non-stationary GLBs: challenges

In their seminal work, Filippi et al. (2010) countered the aforementioned difficulty by introducing a
projection step, mapping θ̂t back to an admissible parameter θ̃t ∈ Θ. Formally, they compute:

θ̃t = arg min
θ∈Θ

∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V−1

t

(P0)

and use θ̃t to predict the performance of the available actions. The projection step (P0) essentially
incorporates the prior knowledge θ? ∈ Θ (Assumption 2) without degrading the learning guarantees
of the maximum likelihood estimator. This strategy was also leveraged by Russac et al. (2020a),
which was made possible thanks to their piece-wise stationarity assumption.

The situation is different in our setting, as the parameter-drift framework allows the sequence
{θt?} to change at every round. This introduces (1) the need to characterize two phenomenons of
different nature that we will designate as learning and tracking. The former (learning) is linked to the
deviation of the maximum-likelihood estimator θ̂t from its noiseless counterpart θ̄t (the estimator that
one would have obtained if one could have averaged an infinite number of realization of the trajectory).
The later (tracking) measures the deviation of θ̄t from the current θt?, due to an incompressible error
inherited from the drifting nature of the sequence {θs?}ts=1. The learning and tracking mechanisms
are both sources of deviation of θ̂t away from Θ, each under a different metric. This leads to (2)
a tension in the design of the projection as this requires to incorporate the knowledge {θt?} ∈ Θ,
without degrading neither the learning nor the tracking guarantees. This rules out the projection step
(P0), oblivious to the tracking aspect of the problem and which needs to be generalized to adapt to
the two sources of deviation (i.e learning and tracking).

3. Algorithm and regret bound

3.1. Algorithm

This section is dedicated to the description of the design of our new algorithm BVD-GLM-UCB. It
operates in two steps: (Step 1) the computation of an appropriate admissible parameter θ̃t ∈ Θ (to
be used for predicting the rewards associated with the actions x ∈ Xt available at round t) and (Step
2) the construction of a suitable exploration bonus to compensate for prediction errors.

The first step builds on the following set, linked to the deviation incurred through the learning
process:

Eδt (θ) :=

{
θ′ ∈ Rd s.t

∥∥∥gt(θ′)− gt(θ)∥∥∥
Ṽ−1

t

≤ βt(δ)
}
, (3)

where βt(δ) is a slowly-increasing function of time (to be defined later) and δ ∈ (0, 1].
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Θ Eδt (θ̂t)Eδt (θ̂t)Eδt (θ̂t)

Eδt (θpt )Eδt (θpt )Eδt (θpt )

θ̂t

θ̄t
θt?

θpt
θ̃t

∝Bt∝Bt∝Bt

∝Bt∝Bt∝Bt

Figure 1: Illustration of the different parameters of interest. As stated by Lemma 2 and Lemma 4,
the deviations (θpt ↔ θ̂t) and (θ̄t ↔ θt?) are linked to the parameter-drift Bt. On the other
hand, the deviations (θ̂t ↔ θ̄t) and (θ̃t ↔ θpt ) are characterized by the stochastic nature of
the problem.

Step 1. We start by identifying an intermediary parameter θpt , solution of the following con-
strained optimization program (ties can be broken arbitrarily):

θpt ∈ arg min
θ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V−2

t

s.t Θ ∩ Eδt (θ) 6= ∅
}
. (P1)

The optimization program (P1) is well-posed as it consists in minimizing a smooth function over
a non-empty compact set2. Once θpt is computed, the algorithm simply chooses any parameter
θ̃t ∈ Θ ∩ Eδt (θpt ). An efficient procedure to find such a parameter is detailed in Section 3.3. The
different parameters of interest for BVD-GLM-UCB are illustrated in Figure 1.

Remark 2 Notice the difference with the projection step used in the stationary case. In our case it is
possible that Eδt (θ̂t) (which is the confidence set centered at θ̂t) does not intersect the admissible set
Θ. Our strategy for finding θ̃t is then to compute an appropriate vibration Eδt (θpt ) of Eδt (θ̂t) which
does intersect Θ, while minimizing the deviation between θpt and θ̂t according to a metric related to
the tracking error (through the map gt and the squared inverse of the design matrix).

Step 2. The exploration bonus at round t for a given arm x ∈ Xt is defined as bt(x) =
2Rµβt(δ)‖x‖V−1

t
, where δ ∈ (0, 1] and:

βt(δ) =
√
λcµS + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
.

BVD-GLM-UCB then follows an optimistic strategy, boosting the predicted reward associated with
θ̃t by bt and plays xt ∈ arg maxx∈Xt µ(〈x, θ̃t〉) + bt(x). The pseudo-code is summarized in
Algorithm 1.

2. Notice that {θ s.t Θ ∩ Eδt (θ) 6= ∅} always contains 0d, while the compactness is inherited from Θ.
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Algorithm 1 BVD-GLM-UCB
Input. regularization λ, confidence δ, inverse link function µ, weight γ, constants S,L and σ.
Initialization. Compute Rµ, let V1 ← λId and θ̂1 ← 0d.
for t ≥ 1 do

Find θpt by solving (P1) and select θ̃t ∈ Θ ∩ Eδt (θpt ).
Play xt ← arg maxx∈Xt µ(〈x, θ̃t〉) + 2Rµβt(δ)‖x‖V−1

t
.

Observe reward rt+1, update θ̂t+1 by solving Equation (2).
Update design matrix: Vt+1 ← γVt + xtx

T
t + (1− γ)λId.

end for

3.2. Regret bound

We provide in Theorem 1 a high-probability bound on the regret of BVD-GLM-UCB.

Theorem 1 Under Assumptions 1-2-3, setting γ = 1 − (BT /(dT ))2/3 ensures that the regret of
BVD-GLM-UCB satisfies:

RT = Õ
(
Rµd

2/3B
1/3
T T 2/3

)
w.h.p

A few comments are in order. First, we note that the upper-bound onRT matches the asymptotical
rates of the LB lower-bound under parameter drift (Cheung et al., 2019a, Theorem 1). Second, one
can notice the presence in the bound of the ratio Rµ, typical of the linearization approach performed
to analyze GLBs. The bound presented in Theorem 1 is therefore quite natural and extends the work
of Filippi et al. (2010) to non-stationary worlds. We emphasize that if the result seems unsurprising,
it required a substantially different machinery, both for the design of the algorithm and its analysis.
We highlight this last point in Section 4, dedicated at providing a comprehensive sketch of proof for
Theorem 1. The complete and detailed proof is deferred to Section B in the supplementary material.

3.3. Solving the projection step

The optimization program (P1) and the subsequent search of a valid parameter θ̃t can raise some
legitimate concerns regarding the ease of practical implementation. Indeed, the feasible set of (P1)
is given by {θ s.t. Θ ∩ Eδt (θ) 6= ∅}, where Eδt (θ) is defined in (3). Hence, the associated constraint
is implicit as it involves an additional non-convex minimization program. As a result, it makes the
constraint uneasy to manipulate and even hard to check. The same difficulty arises when searching
for θ̃t ∈ Θ ∩ Eδt (θpt ) where θpt is a solution of (P1), due to the non-convexity of the set Eδt (θpt ). The
following proposition provides an alternative that avoids those difficulties.

Proposition 1 Let θ̃t be such that:(
θ̃t
ηpt

)
∈ arg min
θ′∈Rd,η∈Rd

{∥∥∥gt(θ′) + βt(δ)Ṽ
1/2
t η − gt(θ̂t)

∥∥∥
V−2

t

s.t
∥∥θ′∥∥

2
≤ S, ‖η‖2 ≤ 1

}
. (P2)

It exists θpt solution of (P1) such that θ̃t ∈ Θ ∩ Eδt (θpt ).

Proposition 1 shows that a valid θ̃t can be found by solving (P2), bypassing the need to compute
θpt . Essentially, the initial two-steps procedure to find θ̃t (through the intermediary program (P1)) is
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replaced by a single minimization program augmented with a slack variable η. The attentive reader
may notice that (P2) is now similar to (P0), the projection step employed in Filippi et al. (2010). As a
result, BVD-GLM-UCB is comparable to the original algorithm GLM-UCB in terms of computational
burden. The proof of Proposition 1 is given in Section C in the appendix.

3.4. Online estimation of the variation-budget

Motivation. The attentive reader may notice that the minimax-optimality of BVD-GLM-UCB is
conditioned on the knowledge of an upper-bound BT for the true parameter-drift BT,?. Naturally,
the tighter this upper-bound, the better the performance. Yet, whether such a knowledge is available
in real-life problems is, to say the least, questionable. This issue is not specific to our approach
but is shared with all non-stationary parametric bandit methods - see for instance (Cheung et al.,
2019b; Zhao et al., 2020). For linear bandits, previous approaches circumvented this drawback with
a Bandit-over-Bandit strategy (Cheung et al., 2019a, Section 7), where BT,? is learned online by

a master algorithm. This guarantees an expected regret scaling as Õ
(
d2/3B

1/3
T,?T

2/3 + d1/2T 3/4
)

(Cheung et al., 2019a, Theorem 4) without having the knowledge of BT,?. We however note that
this technique was specialized for linear bandits and for the sliding-window strategy. As hinted in
the introduction one could easily design a sliding-window approach of BVD-GLM-UCB (using very
similar arguments as the ones displayed in this paper) and extend the Bandit-over-Bandit of Cheung
et al. (2019a) to the GLB framework. Here, we follow a different path and introduce an equivalent
method for the exponential-weighting strategy. To the best of our knowledge, this technique was
missing in the non-stationary parametric bandit literature. It notably proves that the online learning
of BT,? can be efficiently performed under discounted strategies.

Bandit-over-Bandit for discounted strategies. Notice that naive bounding givesBT,? ∈ (0, 2ST ].
The main idea for learning BT,? online is to grid on a log-scale the interval (0, 2ST ] with N values
{BT,j}Nj=1. We then create N instances of BVD-GLM-UCB, each set with a different discount factor:

γj = 1−
(
BT,j
dT

)2/3

= 1− 2j−1

25/3d2/3TS2/3
.

These instances will be our experts. We then deploy a master algorithm - a version of EXP3 (Auer
et al., 2002), which acts repeatedly as follows: 1. it chooses an expert j (i.e a new instance of
BVD-GLM-UCB with parameter γj) to interact with the environment during a time frame of lengthH
(H is a positive integer). 2. The master algorithm then observes the cumulative reward (aggregated
on the time frame) of the expert j. We give the pseudo-algorithm of this procedure in Algorithm 2.

Informally, the idea is that EXP3 will learn to select the best performing γj associated with the
best estimate BT,j of BT,?. Intuitively, this should guarantee small regret as EXP3 will mostly play
instances of BVD-GLM-UCB which nearly capture the true magnitude of the non-stationarity. This
intuition is made rigorous in Theorem 2, whose proof is deferred to Section E in the appendix.

Theorem 2 Under Assumptions 1-2, the regret of BOB-BVD-GLM-UCB when setting H = bd
√
T c

satisfies:

E[RT ] = Õ
(
Rµd

2/3T 2/3 max
(
BT,?, d

−1/2T 1/4
)1/3

)
.
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Algorithm 2 BOB-BVD-GLM-UCB (a more detailed version is deferred to Appendix E.2).
Input. LengthH , time horizon T , regularization λ, confidence δ, inverse link function µ, constants
S,L and σ.
Initialization. Let N ← d2 log2(2ST 3/2)e and H ← {γj = 1 − 2j−1

25/3d2/3TS2/3 }Nj=1, initialize
EXP3 with action set indexed byH.
for i = 1, . . . , dT/He do
j ← action selected by EXP3.
Initialize a sub-routine BVD-GLM-UCB with parameter γj .
for t = 1, . . . ,H do

Play with BVD-GLM-UCB with parameter γj , observe reward rt+1.
end for
Update EXP3 with reward

∑H
t=1 rt+1.

end for

Essentially, we obtain a regret bound which is identical to the ones of the Bandit-over-Bandit
algorithms of Cheung et al. (2019a) and Zhao et al. (2020). The conclusions are therefore of similar
nature: namely, when BT,? ≥ d−1/2T 1/4 we obtain a minimax rate, without knowing BT,?. Again,
note here the presence of the problem-dependant constant Rµ, inherited from the non-linear reward
structure imposed in GLBs.

4. Proof sketch

In this section, we detail the key steps of the proof of Theorem 1. In particular, we shed light on the
tension between the learning and tracking aspects of the problem and their role in the choice of the
estimator θ̃t, through the use of an appropriate projection step.

Learning versus tracking. A crucial feature of non-stationary GLBs lies in the singular nature of
the deviation of θ̂t from θt?. This arises from two fundamentally different mechanisms: learning and
tracking. We introduce the following estimator, which allows for a clean-cut distinction between the
two phenomenons:

θ̄t := arg min
θ∈Rd

{
t−1∑
s=1

γt−1−s [b(〈xs, θ〉)− µ (〈xs, θs?〉) 〈xs, θ〉] +
λcµ
2

∥∥θ − θt?∥∥2

2

}
. (4)

The parameter θ̄t is the minimizer of a strictly convex and coercive function, thus is well-defined and
unique. Intuitively, θ̄t would be the estimator obtained under a perfect (e.g noiseless) observation
of the reward3. As a result, the deviation between θ̂t and θ̄t is solely due to the stochastic nature of
the problem (learning). On the other hand, the deviation between θ̄t and θt? is a consequence of the
unpredictable changes of the sequence {θs?}s (tracking). The introduction of the reference point θ̄t
allows us to characterize both deviations separately in Lemma 1 and Lemma 2.

Lemma 1 [Learning] Let δ ∈ (0, 1]. With probability at least 1− δ:

for all t ≥ 1, θ̄t ∈ Eδt (θ̂t) =

{
θ ∈ Rd s.t

∥∥∥gt(θ)− gt(θ̂t)∥∥∥
Ṽ−1

t

≤ βt(δ)
}
.

3. Note the difference between θ̂t and θ̄t, where the rewards rt+1 are replaced by their conditional expected values
µ (〈xs, θs?〉)

9
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Lemma 1 ensures that with high probability the set Eδt (θ̂t) is a confidence set for θ̄t. A complete
proof of this result is deferred to Section A.1 in the supplementary material.

Lemma 2 [Tracking] Let D ∈ N∗. The following holds:

‖gt(θ̄t)− gt(θt?)‖V−2
t
≤ 2kµL

2S

λ

γD

1− γ
+ kµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2
.

Lemma 2 effectively links the deviation of θ̄t from θt? to the variation-budget BT through the
drift

∑t−1
s=t−D

∥∥θs? − θs+1
?

∥∥
2
. The proof of this result borrows tools from Russac et al. (2019) and

is deferred to Section A.3 in the supplementary material. The integer D appearing in Lemma 2 is
introduced for the sake of the analysis only. It allows to treat separately old and recent observations.
We provide its optimal value later in this section.

Remark 3 Behind the statement of Lemma 1 and Lemma 2 hides the main reason why the projection
step of Filippi et al. (2010) needs to be generalized. Indeed, it appears that the deviations (θ̂t ↔ θ̄t)
and (θ̄t ↔ θt?) are controlled through different metrics (Ṽ−1t and V−2t , respectively). Projecting
according to the first metric would corrupt the control of the second deviation, and conversely.

Regret decomposition and prediction error. To bound the instantaneous regret at round t, we
rely on the prediction error ∆t defined as follows for any arm x ∈ Xt:

∆t(x) :=
∣∣∣µ(〈x, θ̃t〉)− µ(〈x, θt?〉)∣∣∣ .

The next Lemma ties the cumulative pseudo-regret to the sum of prediction errors. This derivation
is classical and the proof is deferred to Section B.1 in the supplementary material.

Lemma 3 The following holds:

RT ≤ 2Rµ

T∑
t=1

βt(δ)
[
‖xt‖V−1

t
− ‖xt?‖V−1

t

]
+

T∑
t=1

[
∆t(xt) + ∆t(x

t
?)
]
.

Thanks to Lemma 3 we are left to characterize the prediction error ∆t(x) for any x ∈ Xt.
Following Filippi et al. (2010), we rely on the mean-value theorem to ensure that it exists θ̊t ∈ [θ̃t, θ

t
?]

such that4:

∆t(x) ≤ kµ
〈
x,Ht(θ̊t)

(
gt(θ̃t)− gt(θt?)

)〉
, (5)

where Ht(θ) :=
∑t−1

s=1 µ̇(〈xs, θ〉)xsxTs + λcµId. Since θ̃t, θt? ∈ Θ, we obtain by convexity that
θ̊t ∈ Θ and we can use the lower bound Ht(θ̊t) � cµVt.

4. Formally, θ̊t ∈ [θ̃t, θ
t
?] means that there exists v ∈ [0, 1] such that θ̊t = vθ̃t + (1− v)θt?.

10
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Remark 4 In this last inequality resides the mistake that was made in previous extension of Filippi
et al. (2010) to the non-stationary setting (Cheung et al., 2019a; Zhao et al., 2020). Indeed, if
the prediction error is measured at θ̂t, we are left with θ̊t ∈ [θt?, θ̂t], and θ̊t can lie outside of the
admissible set Θ (since θ̂t can). The lower-bound linking Ht(θ̊t) and Vt would therefore not hold.
More precisely, and as detailed in Section 2.2, when θ̊t ∈ [θt?, θ̂t] not much can be said on the link
between Ht(θ̊t) and Vt without severely degrading the final regret guarantees.

Adding and removing gt(θ̂t) + gt(θ
p
t ) + gt(θ̄t) inside the inner-product in Equation (5), followed by

easy manipulations yields:

∆t(x) ≤Rµ ‖x‖V−1
t

(∥∥∥gt(θ̃t)− gt(θpt )∥∥∥
Ṽ−1

t

+
∥∥∥gt(θ̄t)− gt(θ̂t)∥∥∥

Ṽ−1
t

)
︸ ︷︷ ︸

:=∆learn
t (x)

+Rµ ‖x‖2
(∥∥∥gt(θpt )− gt(θ̂t)∥∥∥

V−2
t

+
∥∥gt(θ̄t)− gt(θt?)∥∥V−2

t

)
︸ ︷︷ ︸

:=∆track
t (x)

.

Leveraging the projection step We can now bound the terms ∆learn
t (x) and ∆track

t (x) separately.
Lemma 1 along with the design θ̃t ∈ Eδt (θpt ) leads to:

∆learn
t (x) ≤ 2Rµ ‖x‖V−1

t
βt(δ) w.h.p (6)

The first term in ∆track
t (x) is kept under control by the specific design of the projection step (P1).

This is formalized in the following Lemma, whose proof is deferred to Section A.4 in the appendix.

Lemma 4 Under the event {θ̄t ∈ Eδt (θ̂t)} the following holds:

‖gt(θpt )− gt(θ̂t)‖V−2
t
≤ ‖gt(θ̄t)− gt(θt?)‖V−2

t
.

As a result, bounding ∆track
t (x) reduces to bounding ‖gt(θ̄t) − gt(θt?)‖V−2

t
. Combined with

Lemma 2, this result states that the deviation between θpt and θ̂t is characterized by Bt, the parameter-
drift up to round t, as illustrated in Figure 1. This leads to:

∆track
t (x) ≤ 2Rµ ‖x‖2

(
2kµL

2S

λ

γD

1− γ
+ kµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2

)
w.h.p (7)

Putting everything together. Combining Equations (6) and (7) with Lemma 3 and the Elliptical
Lemma (Lemma 6 in the supplementary material) yields:

RT ≤ C1RµdT log(1/γ) + C2Rµγ
DT/(1− γ) + C3RµDBT w.h.p

where the constants C1, C2 and C3 hide log(T ) multiplicative dependencies. A detailed proof of
this result is deferred to Section B.2 in the supplementary material. Setting the hyper-parameters
D = log(T )/(1− γ) and γ = 1− (BTdT )2/3 concludes the proof of Theorem 1.
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(a) Regret bounds of different stochastic ban-
dit algorithms under parameter-drift. The
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Figure 2: Numerical simulations in a non-stationary logistic setting. For the first figure, results
are average over 50 independent runs and shaded areas represent one standard-deviation
variation.

5. Experiments

We illustrate in Figure 2 the behavior and performance of BVD-GLM-UCB with numerical sim-
ulations in a two-dimensional non-stationary logistic environment. Formally, we let rt+1 ∼
Bernoulli(µ(〈xt, θt?〉)) where µ(z) = (1 + e−z)−1 is the logistic function. The sequence {θt?}t≥1

evolves as follows: we let θt? = (0, 1) for t ∈ [1, T/3]. Between t = T/3 and t = 2T/3 we
smoothly rotate θt? from (0, 1) to (1, 0). Finally we let θt? = (0, 1) for t ∈ [2T/3, T ]. A thorough
description of the experimental setting can be found in Appendix F. We compare in Figure 2(a)
the four following algorithms: OFUL (Abbasi-Yadkori et al., 2011) (stationary, here mispecified),
GLM-UCB (Filippi et al., 2010) (stationary, here well-specified), D-LinUCB (Russac et al., 2019)
(an exponentially weighted LB algorithm, non-stationary but here mispecified) and BVD-GLM-UCB
(non-stationary, well-specified). For D-LinUCB and BVD-GLM-UCB we use the value of γ rec-
ommended by the asymptotic analysis. This figure highlights the necessity to employ algorithms
that are well-specified; both GLM-UCB and BVD-GLM-UCB outperform their linear counterparts
(OFUL and D-LinUCB, respectively). Note that an appropriate treatment of non-stationarity is also
crucial to obtain small regret as for the considered horizon the two best performing algorithms are
D-LinUCB and BVD-GLM-UCB. The latter being well-specified and resilient to non-stationary, it
naturally performs best. In Figure 2(b) we highlight the fact that the projection step is necessary as,
in this non-stationary setting, θ̂t regularly leaves the admissible set Θ.

Conclusion and future work

We highlight in this paper a central difficulty in the theoretical treatment of non-stationary GLBs,
overlooked in existing approaches and intimately linked to the non-linear nature of the reward function.

12
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To overcome this difficulty, we introduce a generalization of the projection step from (Filippi et al.,
2010), which allows to simultaneously track the non-stationary ground-truth while preserving the
learning guarantees of weighted maximum-likelihood strategies. This novel algorithmic design along
with a careful analysis proves that an order-optimal (w.r.t d, T and BT ) regret-bound can be achieved
for GLBs under parameter-drift.

We underlined in Section 2.2 the problematic scaling of the problem-dependent constant Rµ.
Consequent research efforts have recently been deployed to reduce its impact on regret-bounds,
both in the stationary (Faury et al., 2020; Abeille et al., 2020; Jun et al., 2020) and piece-wise
stationary (Russac et al., 2020b) settings. What is the optimal dependency w.r.t Rµ in the more
general parameter-drift setting, and how it can be achieved are exciting open questions that we here
leave for future work.

Acknowledgements. The authors would like to thank the anonymous referees which insightful
and constructive comments helped improving the clarity of this manuscript. LF also thanks Olivier
Fercoq for his helpful observations regarding the derivation of the simplified projection step. YR
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Organization of the appendix

The appendix is organized as follows:

• In Section A we provide some concentration results, along with a bound on the prediction
error ∆t inherited from the design of the projection step.

• In Section B we link the prediction error ∆t to the regret RT of BVD-GLM-UCB. We then
proceed to prove the bound on RT announced in Theorem 1.

• In Section C we provide a proof for the equivalence of the optimization programs (P1) (along
with the computation of θ̃t) and (P2).

• Section D contains some secondary lemmas needed for the analysis, such as a version of the
Elliptical Lemma for weighted matrices.

• In Section E we provide a proof for the regret upper-bound of BOB-BVD-GLM-UCB claimed
in Theorem 2.

• Finally, in Section F we provide some details on our numerical simulations.

Appendix A. Concentration and predictions bound

A.1. Confidence sets

Lemma 1 [Learning] Let δ ∈ (0, 1]. With probability at least 1− δ:

for all t ≥ 1, θ̄t ∈ Eδt (θ̂t) =

{
θ ∈ Rd s.t

∥∥∥gt(θ)− gt(θ̂t)∥∥∥
Ṽ−1

t

≤ βt(δ)
}
.

Proof Recall that:

Eδt (θ̂t) =
{
θ ∈ Rd s.t ‖gt(θ)− gt(θ̂t)‖Ṽ−1

t
≤ βt(δ)

}
,

where

βt(δ) =
√
λcµS + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
.

Also, from the definition of θ̄t in Equation (4), by setting to 0 the differential of the convex objective
minimized by θ̄t we obtain that:

gt(θ̄t) =
t−1∑
s=1

γt−1−sµ (〈θs?, xs〉)xs + λcµθ
t
? . (8)

Further, for all s ≥ 1, define

εs+1 = rs+1 − µ(〈θs?, xs〉) . (9)
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Let F̃s = σ(x1, r2, .., xs−1, rs, xs), which compared to Fs includes the arm xs. Note that: E
[
εs+1

∣∣∣F̃s] = 0 (Equation (1))

−µ(〈θs?, xs〉) ≤εs+1 ≤ 2σ + µ(〈θs?, xs〉) a.s (Assumption 2)

Therefore εs+1 is σ-subGaussian conditionally on F̃s. Furthermore, by optimality of θ̂t, differentiat-
ing the objective function in Equation (2) yields:

t−1∑
s=1

γt−1−s
[
µ(〈θ̂t, xs〉)− rs+1

]
xs + λcµθ̂t = 0

⇔⇔⇔ gt(θ̂t) =

t−1∑
s=1

γt−1−sµ(〈θs?, xs〉)xs +

t−1∑
s=1

γt−1−sεs+1xs (Equation (9))

⇔⇔⇔ gt(θ̂t) = gt(θ̄t) +
t−1∑
s=1

γt−1−sεs+1xs − λcµθt? (Equation (8)) (10)

⇔⇔⇔ ‖gt(θ̄t)− gt(θ̂t)‖Ṽ−1
t

=

∥∥∥∥∥
t−1∑
s=1

γt−1−sεs+1xs − λcµθt?

∥∥∥∥∥
Ṽ−1

t

.

Therefore since θt? ∈ Θ and Ṽt � λId we obtain:

‖gt(θ̄t)− gt(θ̂t)‖Ṽ−1
t
≤
√
λcµS +

∥∥∥∥∥
t−1∑
s=1

γt−1−sεs+1xs

∥∥∥∥∥
Ṽ−1

t

.

Simplifying the factors γt−1 in the most right term and applying Proposition 1 of Russac et al. (2019)
proves that with probability at least 1− δ, for all t ≥ 1:

‖gt(θ̄t)− gt(θ̂t)‖Ṽ−1
t
≤
√
λcµS + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
= βt(δ) ,

hence proving the desired result.

A.2. Bounding the prediction error

Lemma 5 Let δ ∈ (0, 1] and D ∈ N∗. With probability at least 1− δ: for all t ≥ 1, for all x ∈ Xt
the following holds.

∆t(x) ≤ 2kµ
cµ

βt(δ)‖x‖V−1
t

+
4k2

µL
3S

cµλ

γD

(1− γ)
+

2k2
µL

cµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2
.
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Proof In the following, we assume that the event Eδ = {θ̄t ∈ Eδt (θ̂t) for all t ≥ 1} holds, which
happens with probability at least 1− δ (Lemma 1). From the definition of the prediction error:

∆t(x) =
∣∣∣µ(〈x, θ̃t〉)− µ(〈x, θt?〉)

∣∣∣
≤

(
sup

x∈X ,θ∈Θ
µ̇ (〈x, θ〉)

)∣∣∣〈x, θ̃t − θt?〉∣∣∣ (x ∈ Xt, θt? ∈ Θ, θ̃t ∈ Θ)

≤ kµ
∣∣∣〈x, θ̃t − θt?〉∣∣∣ . (by definition of kµ) (11)

Further, thanks to the mean value theorem:

gt(θ̃t)− gt(θt?) =
t−1∑
s=1

γt−1−s
[
µ(〈θ̃t, xs〉)− µ(〈θt?, xs〉)

]
+ λcµ(θ̃t − θt?)

=
t−1∑
s=1

γt−1−s
[∫ 1

v=0
µ̇
(
〈xs, (1− v)θt? + vθ̃t〉

)
dv

]
xsx

T
s (θ̃t − θt?) + λcµ(θ̃t − θt?)

= Gt · (θ̃t − θt?) , (12)

where:

Gt :=
t−1∑
s=1

γt−1−s
[∫ 1

v=0
µ̇
(
〈xs, (1− v)θt? + vθ̃t〉

)
dv

]
xsx

T
s + λcµId � cµVt .

Note that because xs ∈ X for all s ∈ [t − 1] and θ̃t, θt? ∈ Θ we have Gt ≥ cµVt. Assembling
together Equations (11) and (12) we get:

∆t(x) ≤ kµ
∣∣∣〈x,G−1t (gt(θ̃t)− gt(θt?))

〉∣∣∣
≤ kµ

∣∣∣〈x,G−1t (gt(θ̃t)− gt(θpt ) + gt(θ
p
t )− gt(θ̂t) + gt(θ̂t)− gt(θ̄t) + gt(θ̄t)− gt(θt?))

〉∣∣∣
≤ kµ

∣∣∣〈x,G−1t (gt(θ̃t)− gt(θpt ) + gt(θ̂t)− gt(θ̄t))
〉∣∣∣︸ ︷︷ ︸

:=∆learn
t (x)

+ kµ

∣∣∣〈x,G−1t (gt(θ
p
t )− gt(θ̂t) + gt(θ̄t)− gt(θt?))

〉∣∣∣︸ ︷︷ ︸
:=∆track

t (x)

≤ ∆learn
t (x) + ∆track

t (x) . (13)

This decomposition brings out the contribution of two different phenomenons (learning and
tracking) which will be handled separately. Starting with the learning:
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∆learn
t (x) = kµ

∣∣∣〈x,G−1t (gt(θ̃t)− gt(θpt ) + gt(θ̂t)− gt(θ̄t))
〉∣∣∣

= kµ

∣∣∣〈Ṽ1/2
t G−1t x, Ṽ

−1/2
t (gt(θ̃t)− gt(θpt ) + gt(θ̂t)− gt(θ̄t))

〉∣∣∣
≤ kµ‖x‖G−1

t ṼtG
−1
t

(
‖gt(θ̃t)− gt(θpt )‖Ṽ−1

t
+ ‖gt(θ̂t)− gt(θ̄t)‖Ṽ−1

t

)
(Cauchy-Schwarz)

≤ kµ‖x‖G−1
t VtG

−1
t

(
‖gt(θ̃t)− gt(θpt )‖Ṽ−1

t
+ ‖gt(θ̂t)− gt(θ̄t)‖Ṽ−1

t

)
(Ṽt ≤ Vt)

≤ kµ√
cµ
‖x‖G−1

t

(
‖gt(θ̃t)− gt(θpt )‖Ṽ−1

t
+ ‖gt(θ̂t)− gt(θ̄t)‖Ṽ−1

t

)
(Vt ≤ c−1

µ Gt)

≤ kµ
cµ
‖x‖V−1

t

(
‖gt(θ̃t)− gt(θpt )‖Ṽ−1

t
+ ‖gt(θ̂t)− gt(θ̄t)‖Ṽ−1

t

)
(G−1t ≤ c−1

µ V−1t )

≤ kµ
cµ
‖x‖V−1

t

(
βt(δ) + ‖gt(θ̂t)− gt(θ̄t)‖Ṽ−1

t

)
(θ̃t ∈ Eδt (θpt ))

≤ kµ
cµ
‖x‖V−1

t
(βt(δ) + βt(δ)) . (Eδ holds)

We used Ṽt ≤ Vt which is a consequence of γ ∈ (0, 1). As a result:

∆learn
t (x) ≤ 2kµ

cµ
βt(δ)‖x‖V−1

t
. (14)

Before bounding the tracking term, we state two technical lemmas that will be proven in Section A.3
and A.4, respectively.

Lemma 2 [Tracking] Let D ∈ N∗. The following holds:

‖gt(θ̄t)− gt(θt?)‖V−2
t
≤ 2kµL

2S

λ

γD

1− γ
+ kµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2
.

Lemma 4 Under the event {θ̄t ∈ Eδt (θ̂t)} the following holds:

‖gt(θpt )− gt(θ̂t)‖V−2
t
≤ ‖gt(θ̄t)− gt(θt?)‖V−2

t
.

We now bound the tracking term:

∆track
t (x) = kµ

∣∣∣〈x,Gt
−1(gt(θ

p
t )− gt(θ̂t) + gt(θ̄t)− gt(θt?))

〉∣∣∣
≤ kµ ‖x‖2

∥∥∥gt(θpt )− gt(θ̂t) + gt(θ̄t)− gt(θt?)
∥∥∥
G−2
t

(Cauchy-Schwarz)

≤ kµL

cµ

∥∥∥gt(θpt )− gt(θ̂t) + gt(θ̄t)− gt(θt?)
∥∥∥
V−2
t

(‖x‖2 ≤ L,Gt � cµVt)

≤ kµL

cµ

(∥∥∥gt(θpt )− gt(θ̂t)∥∥∥
V−2
t

+
∥∥gt(θ̄t)− gt(θt?)∥∥V−2

t

)
(Triangle inequality)

≤ 2kµL

cµ

∥∥gt(θ̄t)− gt(θt?)∥∥V−2
t

(Lemma 4)
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Thanks to Lemma 2, we finally obtain,

∆track
t (x) ≤

4k2
µL

3S

cµλ

γD

(1− γ)
+

2k2
µL

cµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2
. (15)

Assembling Equations (13), (14) and (15) finishes the proof.

A.3. Proof of Lemma 2

Lemma 2 [Tracking] Let D ∈ N∗. The following holds:

‖gt(θ̄t)− gt(θt?)‖V−2
t
≤ 2kµL

2S

λ

γD

1− γ
+ kµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2
.

Proof Thanks to Equation (8) we have:

gt(θ̄t) =
t−1∑
s=1

γt−1−sµ(〈xs, θs?〉)xs + λcµθ
t
?

⇔⇔⇔ gt(θ̄t)− gt(θt?) =
t−1∑
s=1

γt−1−s [µ(〈xs, θs?〉)− µ(〈xs, θt?〉)
]
xs

⇔⇔⇔ gt(θ̄t)− gt(θt?) =
t−1∑
s=1

γt−1−s
[∫ 1

v=0
µ̇
(〈
xs, vθ

t
? + (1− v)θs?

〉)
dv

]
xsx

T
s (θs? − θt?) (mean-value theorem)

⇔⇔⇔ gt(θ̄t)− gt(θt?) =
t−1∑
s=1

γt−1−sαsxsx
T
s (θs? − θt?) ,

where we defined:

αs :=

∫ 1

v=0
µ̇
(〈
xs, vθ

t
? + (1− v)θs?

〉)
dv ∈ [cµ, kµ] .

Therefore:

‖gt(θ̄t)− gt(θt?)‖V−2
t

=

∥∥∥∥∥
t−1∑
s=1

γt−1−sαsxsx
T
s (θs? − θt?)

∥∥∥∥∥
V−2

t

.

The rest of the proof follows the strategy of Russac et al. (2019) to yield the announced result. Let
D ∈ N∗ and notice that:∥∥∥∥∥

t−1∑
s=1

γt−1−sαsxsx
T
s (θs? − θt?)

∥∥∥∥∥
V−2

t

≤

∥∥∥∥∥
t−D−1∑
s=1

γt−1−sαsxsx
T
s (θs? − θt?)

∥∥∥∥∥
V−2

t︸ ︷︷ ︸
:=d1

+

∥∥∥∥∥
t−1∑

s=t−D
γt−1−sαsxsx

T
s (θs? − θt?)

∥∥∥∥∥
V−2

t︸ ︷︷ ︸
:=d2

.
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Both terms are bounded separately; starting with d1:

d1 ≤ λ−1

∥∥∥∥∥
t−D−1∑
s=1

γt−1−sαsxsx
T
s (θs? − θt?)

∥∥∥∥∥ (Vt ≥ λId)

≤ λ−1
t−D−1∑
s=1

γt−1−s|αs|
∥∥∥xsxTs (θs? − θt?)

∥∥∥ (Triangle inequality)

≤ 2kµλ
−1SL2

t−D−1∑
s=1

γt−1−s (‖xs‖2 ≤ L, θ
s
?, θ

t
? ∈ Θ, |αs| ≤ kµ)

≤ 2kµλ
−1SL2γD(1− γ)−1 .

And for d2:

d2 =

∥∥∥∥∥V−1t

t−1∑
s=t−D

γt−1−sαsxsx
T
s (θs? − θt?)

∥∥∥∥∥
=

∥∥∥∥∥
t−1∑

s=t−D
V−1t γt−1−sαsxsx

T
s (θs? − θt?)

∥∥∥∥∥
=

∥∥∥∥∥
t−1∑

s=t−D
V−1t γt−1−sαsxsx

T
s

t−1∑
p=s

(
θp? − θp+1

?

)∥∥∥∥∥ (Telescopic sum)

≤

∥∥∥∥∥∥
t−1∑

p=t−D
V−1t

p∑
s=t−D

γt−1−sαsxsx
T
s

(
θp? − θp+1

?

)∥∥∥∥∥∥ (Re-arranging)

≤
t−1∑

p=t−D

∥∥∥∥∥V−1t

p∑
s=t−D

γt−1−sαsxsx
T
s

(
θp? − θp+1

?

)∥∥∥∥∥ (Triangle inequality)

≤
t−1∑

p=t−D
λmax

(
V−1t

p∑
s=t−D

γt−1−sαsxsx
T
s

)
‖θp? − θp+1

? ‖ .
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Finishing the bound:

λmax

(
V−1t

p∑
s=t−D

γt−1−sαsxsx
T
s

)
= λmax

(
V
−1/2
t

(
p∑

s=t−D
γt−1−sαsxsx

T
s

)
V
−1/2
t

)

= max
‖x‖2≤1

{
xT

(
V
−1/2
t

p∑
s=t−D

γt−1−sαsxsx
T
sV
−1/2
t

)
x

}

= max
‖x‖2≤1

{
p∑

s=t−D
γt−1−sαs

(
xTsV

−1/2
t x

)2
}

≤ kµ max
‖x‖2≤1

{
p∑

s=t−D
γt−1−s

(
xTsV

−1/2
t x

)2
}

= kµλmax

(
V−1t

p∑
s=t−D

γt−1−sxsx
T
s

)
.

Easy computations show that λmax
(
V−1t

∑p
s=t−D γ

t−1−sxsx
T
s

)
≤ 1, which concludes the proof.

A.4. Proof of Lemma 4

Lemma 4 Under the event {θ̄t ∈ Eδt (θ̂t)} the following holds:

‖gt(θpt )− gt(θ̂t)‖V−2
t
≤ ‖gt(θ̄t)− gt(θt?)‖V−2

t
.

Proof We prove this result by contradiction. Assume that:

‖gt(θpt )− gt(θ̂t)‖V−2
t
> ‖gt(θ̄t)− gt(θt?)‖V−2

t
, (16)

For all s ≥ 1 define:

r̃s+1 := µ(〈xs, θt?〉) + εs+1 , (17)

where {εs}s is defined in Equation (9). Further, let:

θc := arg min
θ∈Rd

t−1∑
s=1

γt−1−s [b(〈θ, xs〉)− r̃s+1〈θ, xs〉)] +
λcµ
2
‖θ‖22 ,

which is well-defined as the minimizer of a strictly convex, coercive function. Upon differentiating
we get:

gt(θc) =

t−1∑
s=1

γt−1−sr̃s+1xs

=

t−1∑
s=1

γt−1−sεs+1xs +

t−1∑
s=1

γt−1−sµ(〈xs, θt?〉)xs (Equation (17))

= gt(θ̂t)− gt(θ̄t) + λcµθ
t
? +

t−1∑
s=1

γt−1−sµ(〈xs, θt?〉)xs (Equation (10))

= gt(θ̂t)− gt(θ̄t) + gt(θ
t
?) . (18)
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Therefore:

‖gt(θc)− gt(θ̂t)‖V−2
t

= ‖gt(θ̄t)− gt(θt?)‖V−2
t

< ‖gt(θpt )− gt(θ̂t)‖V−2
t
. (Equation 16)

Further from Equation (18) we get:

‖gt(θc)− gt(θt?)‖V−2
t

= ‖gt(θ̄t)− gt(θ̂t)‖V−2
t

≤ βt(δ) (θ̄t ∈ Eδt (θ̂t))

⇔⇔⇔ θt? ∈ Eδt (θc) .

To sum-up, we have ‖gt(θc)− gt(θ̂t)‖V−2
t
< ‖gt(θpt )− gt(θ̂t)‖V−2

t
and Eδt (θc) ∩Θ 6= ∅ since

θt? ∈ Θ ∩ Eδt (θc). This contradicts the definition of θpt (in (P1)) and therefore Equation (16) must be
wrong, which proves the announced result.

Appendix B. Regret bound

B.1. Regret decomposition

Lemma 3 The following holds:

RT ≤
2kµ
cµ

T∑
t=1

βt(δ)
[
‖xt‖V−1

t
− ‖xt?‖V−1

t

]
+

T∑
t=1

[
∆t(xt) + ∆t(x

t
?)
]
.

Proof We recall that xt? = arg maxx∈Xt µ(〈θt?, x〉). Note that:

RT =

T∑
t=1

µ(〈xt?, θt?〉)− µ(〈xt, θt?〉)

=

T∑
t=1

µ(〈xt?, θt?〉)− µ(〈xt?, θ̃t〉) + µ(〈xt?, θ̃t〉)− µ(〈xt, θ̃t〉) + µ(〈xt, θ̃t〉)− µ(〈xt, θt?〉)

=
T∑
t=1

[
µ(〈xt?, θ̃t〉)− µ(〈xt, θ̃t〉)

]
+

T∑
t=1

[
µ(〈xt?, θt?〉)− µ(〈xt?, θ̃t〉)

]
+

T∑
t=1

[
µ(〈xt, θ̃t〉)− µ(〈xt, θt?〉)

]
≤ 2kµ

cµ

T∑
t=1

βt(δ)
[
‖xt‖V−1

t
− ‖xt?‖V−1

t

]
+

T∑
t=1

[
µ(〈xt?, θt?〉)− µ(〈xt?, θ̃t〉)

]
+

T∑
t=1

[
µ(〈xt, θ̃t〉)− µ(〈xt, θt?〉)

]
.

In the last inequality, we used the fact that xt = arg maxx∈X

{
µ(〈x, θ̃t〉) +

2kµ
cµ
βt(δ)‖x‖V−1

t

}
.

Using the definition of ∆t(x) we conclude that:

RT ≤
2kµ
cµ

T∑
t=1

βt(δ)
[
‖xt‖V−1

t
− ‖xt?‖V−1

t

]
+

T∑
t=1

[
∆t(xt) + ∆t(x

t
?)
]
.
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B.2. Regret bound

We now claim Theorem 1, bounding the regret of BVD-GLM-UCB.

Theorem 1 Let δ ∈ (0, 1] and D ∈ N∗. Under Assumptions 1 -2-3, with probability at least 1− δ:

RT ≤ C1RµβT (δ)
√
dT

√
T log(1/γ) + log

(
1 +

L2(1− γT )

λd(1− γ)

)
+ C2Rµ

γD

1− γ
T + C3RµDBT

Further, setting γ = 1− (BT /(dT ))2/3 ensures:

RT = Õ
(
kµ
cµ
d2/3B

1/3
T T 2/3

)
w.h.p

Proof In the following, we assume that the event {θ̄t ∈ Eδt (θ̂t),∀t ≥ 1} holds, which happens with
probability at least 1− δ (Lemma 1). Thanks to Lemma 5, the following holds:

∆t(xt) +
2kµ
cµ

βt(δ)‖xt‖V−1
t
≤ 4kµ

cµ
βt(δ)‖xt‖V−1

t
+

4k2
µL

3S

cµλ(1− γ)
γD +

2k2
µL

cµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2

∆t(x
t
?)−

2kµ
cµ

βt(δ)‖xt?‖V−1
t
≤

4k2
µL

3S

cµλ(1− γ)
γD +

2k2
µL

cµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2

Assembling this result with Lemma 3 yields:

RT ≤
T∑
t=1

4kµ
cµ

βt(δ)‖xt‖V−1
t︸ ︷︷ ︸

Rlearn
T

+
T∑
t=1

[
8k2

µL
3S

cµλ(1− γ)
γD +

4k2
µL

cµ

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2

]
︸ ︷︷ ︸

Rtrack
T

.

We now bound each term separately. Starting with Rlearn
T :

Rlearn
T ≤ 4kµ

cµ
βT (δ)

T∑
t=1

‖xt‖V−1
t

(t→ βt(δ) increasing)

≤ 4kµ
cµ

βT (δ)
√
T

√√√√ T∑
t=1

‖xt‖2V−1
t

(Cauchy-Schwarz)

≤ 4kµ
cµ

βT (δ)
√

2T max(1, L2/λ)

√
dT log(1/γ) + log

(
detVT+1

λd

)
(Lemma 6)

≤ 4kµ
cµ

βT (δ)
√

2dT max(1, L2/λ)

√
T log(1/γ) + log

(
1 +

L2(1− γT )

λd(1− γ)

)
. (Lemma 7)

The bounding of the tracking term is straight-forward:

Rtrack
T =

8k2
µL

3S

cµλ(1− γ)
γDT +

4k2
µL

cµ

T∑
t=1

t−1∑
s=t−D

∥∥θs? − θs+1
?

∥∥
2

≤
8k2

µL
3S

cµλ(1− γ)
γDT +

4k2
µL

cµ
DBT .
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Assembling this two bounds (Rlearn
T and Rtrack

T ) yields the first announced result, with the following
constants:

C1 =
√

32 max(1, L2/λ) .

C2 =
8kµL

3S

λ
.

C3 = 4kµL .

The last part of the proof follows the asymptotic argument of Russac et al. (2019). We assume that
BT is sub-linear and let:

D =
log T

1− γ
, γ = 1−

(
BT
dT

)2/3

.

We therefore have the following asymptotic equivalences (omitting logarithmic dependencies):

βT (δ)
√
dT
√
T log(1/γ) ∼ dT ·

(
BT
dT

)1/3

= d2/3B
1/3
T T 2/3

γDT/(1− γ) ∼ exp(− log T )T

(
BT
dT

)−2/3

= d2/3B
−2/3
T T 2/3

DBT ∼ BT
(
BT
dT

)−2/3

= d2/3B
1/3
T T 2/3

Merged with the regret-bound we just proved, this yields the second announced result.

Appendix C. On the projection step

C.1. Equivalent minimization program

Recall the original minimization program for finding θpt :

θpt ∈ arg min
θ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V−2

t

s.t Θ ∩ Eδt (θ) 6= ∅
}
. (P1)

Note that this minimum exists (0d is feasible) and is indeed attained (the feasible set is compact and
the objective smooth). The following reformulation is motivated by the fact that only θ̃t ∈ Θ∩Eδt (θpt )
is needed for the algorithm. To this end, we explicitly introduce θ̃t in the program via a slack variable.
Formally, we study:(

θ̃t
θpt

)
∈ arg min
θ′∈Rd,θ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V−2

t

s.t θ′ ∈ Eδt (θ) ∩Θ

}
. (P1’)

We also introduce the following program:(
θ̃t
η

)
∈ arg min
θ′∈Rd,η∈Rd

{∥∥∥gt(θ′) + βt(δ)Ṽ
1/2
t η − gt(θ̂t)

∥∥∥
V−2

t

s.t
∥∥θ′∥∥

2
≤ S, ‖η‖2 ≤ 1

}
. (P2)

We claim and prove the following result, which is an equivalent reformulation of Proposition 1.
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Proposition 2 The programs (P1’) and (P2) are equivalent.

Proof The proof consists in building a bijection between the solutions of (P1’) and (P2). Let us
introduce the mapping:

f : Θ× Rd → Θ× Rd(
x
y

)
→
(
f1(x)
f2(x, y)

)
=

(
x

β−1
t (δ)Ṽ

−1/2
t (gt(y)− gt(x))

)

We now claim the following Lemma, which proof is deferred to Section C.2.

Lemma 1 The function:

gt :Rd → Rd

θ →
t−1∑
s=1

γt−1−sµ(〈θ, xs〉)xs + λcµθ

is a bijection.

A straight-forward implication of this Lemma is the bijectivity of f . Let (θ̃1, θp) be a solution of
(P1’) and let: (

θ̃2

ηp

)
= f

(
θ̃1

θp

)
.

We are going to show that (θ̃2, ηp) is a solution of (P2). Because (θ̃1, θp) is optimal for (P1’), we
have that:

‖gt(θp)− gt(θ̂t)‖V−2
t
≤ ‖gt(θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) ∈ Θ× Rd s.t θ′ ∈ Eδt (θ)

⇔⇔⇔ ‖gt(θp)− gt(θ̂t)‖V−2
t
≤ ‖gt(θ)− gt(θ̂t)‖V−2

t
(definition of Eδt (θ))

∀(θ′, θ) ∈ Θ× Rd s.t ‖gt(θ′)− gt(θ)‖Ṽ−1
t
≤ βt(δ)

⇔⇔⇔ ‖gt(θp)− gt(θ̂t)‖V−2
t
≤ ‖gt(θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) ∈ Θ× Rd s.t
∥∥f2(θ′, θ)

∥∥
2
≤ 1
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Noticing that for all (x, y) ∈ Θ× Rd we have gt(y) = gt(x) + βt(δ)V
1/2
t f2(x, y) we therefore

obtain:

‖gt(θ̃1) + βt(δ)Ṽ
1/2
t f2(θ̃1, θp)− gt(θ̂t)‖V−2

t
≤ ‖gt(θ′) + βt(δ)Ṽ

1/2
t f2(θ′, θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) ∈ Θ× Rd s.t
∥∥f2(θ′, θ)

∥∥
2
≤ 1

⇔⇔⇔ ‖gt(θ̃1) + βt(δ)Ṽ
1/2
t ηp − gt(θ̂t)‖V−2

t
≤ ‖gt(θ′) + βt(δ)Ṽ

1/2
t f2(θ′, θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) ∈ Θ× Rd s.t
∥∥f2(θ′, θ)

∥∥
2
≤ 1

⇔⇔⇔ ‖gt(θ̃2) + βt(δ)Ṽ
1/2
t ηp − gt(θ̂t)‖V−2

t
≤ ‖gt(θ′) + βt(δ)Ṽ

1/2
t f2(θ′, θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) ∈ Θ× Rd s.t
∥∥f2(θ′, θ)

∥∥
2
≤ 1 (θ̃1 = θ̃2)

⇔⇔⇔ ‖gt(θ̃2) + βt(δ)Ṽ
1/2
t ηp − gt(θ̂t)‖V−2

t
≤ ‖gt(θ′) + βt(δ)Ṽ

1/2
t f2(θ′, θ)− gt(θ̂t)‖V−2

t

∀(θ′, θ) s.t
∥∥f2(θ′, θ)

∥∥
2
≤ 1,

∥∥θ′∥∥
2
≤ S

⇔⇔⇔ ‖gt(θ̃2) + βt(δ)Ṽ
1/2
t ηp − gt(θ̂t)‖V−2

t
≤ ‖gt(θ′) + βt(δ)Ṽ

1/2
t η − gt(θ̂t)‖V−2

t

∀(θ′, η) s.t ‖η‖2 ≤ 1,
∥∥θ′∥∥

2
≤ S

where we last used the fact that f2 spans Rd (surjectivity). Finally, we have that:∥∥∥θ̃2
∥∥∥

2
≤ S (θ̃2 = θ̃1 ∈ Θ)

‖ηp‖2 = β−1
t (δ)

∥∥∥gt(θp)− gt(θ̃1)
∥∥∥
V−1

t

≤ 1 (θ̃1 ∈ Eδt (θp))

Combining the last two results proves that (θ̃2, ηp) is feasible for (P2), and optimal within the
feasible set. As a consequence, (θ̃2, ηp) is a solution of (P2). Therefore, f is a bijection between the
minimizers of (P1’) and (P2), which concludes the proof.

C.2. Bijectivity of gt
Lemma 2 The function:

gt :Rd → Rd

θ →
t−1∑
s=1

γt−1−sµ(〈θ, xs〉)xs + λcµθ

is a bijection.

Proof Injectivity. Notice that ∀θ ∈ Rd:

∇θg(θ) =
t−1∑
s=1

γt−1−sµ̇(〈θ, xs〉)xsxTs + λcµId � 0 .

Hence∇θg is P.S.D, and a simple integral Taylor expansion is enough to prove injectivity.
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Surjectivity Let z ∈ Rd. Let A = Span(x1, .., xt−1) be the vectorial space spanned by {xs}t−1
s=1.

Let z⊥ be the orthogonal projection of z on A and z‖ = z − z⊥. Since z⊥ ∈ A, there exists
{αs}t−1

s=1 ∈ Rt−1 such that:

z⊥ =

t−1∑
s=1

αsxs .

Recall that b(·) is a primitive of µ, which is convex since µ is strictly increasing. Define:

L(θ) =
t−1∑
s=1

γt−1−s
[
b(〈θ, xs〉)−

αs
γt−1−s 〈θ, xs〉

]
+
λcµ
2

∥∥∥∥θ − z‖

λcµ

∥∥∥∥2

.

which is a strictly convex, coercive function. Its minimum θz (which therefore exists and is uniquely
defined) checks:

∇θL(θz) = 0

⇔⇔⇔
t−1∑
s=1

γt−1−s
[
µ(〈θz, xs〉)−

αs
γt−1−s

]
xs + λcµ

(
θz −

z‖

λcµ

)
= 0

⇔⇔⇔ g(θz) =
t−1∑
s=1

αsxs + z‖

⇔⇔⇔ g(θz) = z⊥ + z‖ = z .

which proves surjectivity.

Appendix D. Useful lemmas

The following Lemma is a version of the Elliptical Potential Lemma for weighted sums, similar to
Proposition 4 of Russac et al. (2019).

Lemma 6 Let {xs}∞s=1 a sequence in Rd such that ‖xs‖2 ≤ L for all s ∈ N∗, and let λ be a
non-negative scalar. For t ≥ 1 define Vt :=

∑t−1
s=1 γ

t−1−sxsx
T
s + λId. The following inequality

holds:
T∑
t=1

‖xt‖2V−1
t
≤ 2 max(1, L2/λ)

(
dT log(1/γ) + log

(
detVT+1

λd

))
.
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Proof For all t ≥ 1, by definition:

Vt+1 =
t∑

s=1

γt−sxsx
T
s + λId

= γ
t−1∑
s=1

γt−1−sxsx
T
s + xtx

T
t + λId

� γ

(
t−1∑
s=1

γt−1−sxsx
T
s + xtx

T
t + λId

)
(γ ≤ 1)

� γ
(
Vt + xtx

T
t

)
� γVt

(
Id + V

−1/2
t xtx

T
t V
−1/2
t

)
,

which after some easy manipulations yields:

d log(1/γ) + log detVt+1 − log detVt ≥ log
(

1 + ‖xt‖2V−1
t

)
.

After summing from t = 1 to t = T and telescoping we obtain:

dT log(1/γ) + log

(
detVT+1

λd

)
≥

T∑
t=1

log
(

1 + ‖xt‖2V−1
t

)
≥

T∑
t=1

log

(
1 +

1

max(1, L2/λ)
‖xt‖2V−1

t

)
.

Finally, noticing that 1
max(1,L2/λ)

‖xt‖2V−1
t

≤ 1 and using the fact that for all x ∈ (0, 1] we have

log(1 + x) ≥ x/2 we obtain:

dT log(1/γ) + log

(
detVT+1

λd

)
≥ 1

2 max(1, L2/λ)

T∑
t=1

‖xt‖2V−1
t
,

which in turn yields:

T∑
t=1

‖xt‖2V−1
t
≤ 2 max(1, L2/λ)

(
dT log(1/γ) + log

(
detVT+1

λd

))
,

which is the announced result.

We also remind here the determinant-trace inequality for the weighted design matrix which can
be extracted from Proposition 2 of Russac et al. (2019).

Lemma 7 Let {xs}∞s=1 a sequence in Rd such that ‖xs‖2 ≤ L for all s ∈ N∗, and let λ be a
non-negative scalar. For t ≥ 1 define Vt :=

∑t−1
s=1 γ

t−1−sxsx
T
s + λId. The following inequality

holds:

det(Vt+1) ≤
(
λ+

L2(1− γt)
d(1− γ)

)d
.

28



OPTIMAL REGRET BOUNDS FOR GENERALIZED LINEAR BANDITS UNDER PARAMETER DRIFT

Appendix E. BVD-GLM-UCB algorithm

E.1. High-level ideas

In this part of the appendix, we denote γ? as follows:

γ? = 1− 1

2

(
BT,?
dT2S

)2/3

. (19)

Remark 3 γ? as defined in Equation (19) has a different expression than the discount factor proposed
in Theorem 1. This slight modification is to ensure that γ? is larger than 1/2 and simplifies the finite
time analysis of the regret. Yet, it has no consequence on the asymptotic bound.

BT,? being unknown, we cannot compute the optimal discount factor that depends on the
parameter drift. The general idea is to use a set of different values for the discount factor (respectively
the BT,? values) called H, covering the [1/2, 1) space (respectively the [0, 2ST ) space). Then,
we divide the time horizon T into different blocks of length H . Every H steps, we create a new
instance of BVD-GLM-UCB with a γ that is chosen by a master algorithm: the EXP3 algorithm from
Auer et al. (2002). At the end of each block, this master algorithm receives the cumulative rewards
from the instantiated worker and updates its probability distribution over the setH. The objective
of the master algorithm is to learn the most suitable value of γ so as to maximise the cumulative
rewards in accordance with the dynamics of the environment. On the other side, the different workers
algorithms act exactly as if the BVD-GLM-UCB algorithm was launched on a H-steps experiment.
This setting is similar to the one presented in Cheung et al. (2019a) (respectively Zhao et al. (2020))
with discount factors instead of sliding windows (respectively restart parameters). This framework is
called Bandit-over-Bandit (BOB) precisely because of this two-stage structure between the master
and the workers algorithms.

E.2. Algorithm

The coverageH with the different discount factors is defined in the following way:

H = {γi = 1− µi|i = 1, . . . , N} (20)

with N =

⌈
2

3
log2

(
2ST 3/2

)⌉
+ 1 and µi =

1

2

2i−1

d2/3T (2S)2/3
. (21)

The main algorithm is an instance of the EXP3 algorithm from Auer et al. (2002) where the different
arms correspond to the different discount factors. Following EXP3 analysis (Auer et al., 2002), the
probability of drawing γj for the block i is

p
γj
i = (1− α)

s
γj
i∑
j s

γj
i

+
α

N
, ∀j = 1, 2, . . . , N , (22)

where α is defined as

α = min

{
1,

√
N log(N)

(e− 1)dT/He

}
(23)
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and sγji is initialised at 1 and is updated at the end of each block when selected with

s
γj
i+1 = s

γj
i exp

(
α

Np
γj
i

∑min{iH,T}
t=(i−1)H+1 rt+1

2σH

)
. (24)

Note that in Equation (24), rt+1 is the noisy reward obtained when the action xt is selected with the
BVD-GLM-UCB algorithm with parameter γj . Equation (22), (23) and (24) are the same as in Auer
et al. (2002) except for the rescaling of the cumulative rewards on a block that is required to ensure
that they lie in [0, 1]. Details on this rescaling part can be found in Proposition 4.

Algorithm 3 BOB-BVD-GLM-UCB(detailed)
Input. LengthH , time horizon T , regularization λ, confidence δ, inverse link function µ, constants
S,L and σ.
Initialization. Create the covering spaceH as defined in Eq. (20), set sγi1 = 1, ∀γi ∈ H.
for i = 1, . . . , dT/He do
γj ∼ pγi , the probability vector defined in Eq. (22).
Start a BVD-GLM-UCB subroutine with parameter γj
for t = (i− 1)H + 1, . . . ,min{iH, T} do

Receive the action set Xt.
Select xt(γj) ∈ Xt with BVD-GLM-UCB.
Observe reward rt+1.

end for
Update sγji+1 according to Equation (24).
Update sγi+1 = sγi , ∀γ 6= γj .

end for

Remark 4 We denote xt(γ) the action chosen with the BVD-GLM-UCB algorithm with a discount
factor γ.

E.3. Regret guarantees

In this section, we give an upper-bound for the expected dynamic regret of BOB-BVD-GLM-UCB.
By construction, it is natural to decompose the regret into two sources of errors. First the master
error committed by the EXP3 algorithm by not choosing the best possible discount factor. Second
the worker error inherent to the BVD-GLM-UCB algorithm. Note that there are two independent
sources of randomness: the stochasticity of the rewards (whose expectation is denoted EN ) and the
randomness of the EXP3 algorithm (denoted EEXP3). Bringing things together,
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E[RT ] = EN
[
T∑
t=1

µ(〈xt?, θt?〉)− EEXP3[rt+1]

]
= EN

 T∑
t=1

µ(〈xt?, θt?〉)−
dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt(γ̂), θt?〉)


︸ ︷︷ ︸

worker

+ EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt(γ̂), θt?)〉 − EEXP3 [rt+1]


︸ ︷︷ ︸

master

.

(25)

The next step consists in upper-bounding the worker error and the master error from Eq. (25)
respectively.

Lemma 8 With pavement H defined in Equation (20) for any unknown BT,? > 0, setting k =
b2

3 log2(BT,?T
1/2)c+ 1 yields

γk+1 ≤ γ? ≤ γk .

Proof With assumption 1, we have BT,? ≤ 2ST . Using this, k (as defined in the statement of the
lemma) is smaller than N . We have,

k − 1 ≤ 2

3
log2(BT,?T

1/2) ≤ k

⇔⇔⇔− 1

2

2k−1

d2/3T (2S)2/3
≥ −1

2

(
BT,?
dT2S

)2/3

≥ −1

2

2k

d2/3T (2S)2/3
.

Adding one for the different terms gives the result.

For the rest of the section, we set γ̂ = γk with k defined in Lemma 8. We denote Bi,? =∑iH−1
t=(i−1)H+1‖θ

t+1
? − θt?‖2 and

β?H =
√
λS + σ

√
2 log(T ) + d log

(
1 +

2L2

λd(1− γ?2)

)
. (26)

Proposition 3 The worker error can be upper-bounded in the following way:

worker ≤ 2σ
T

H
+ C1Rµβ

?
H

√
dT

√
2T (1− γ?) +

T

H
log

(
1 +

2L2

dλ(1− γ?)

)
+ 2C2Rµ

1√
T

1

1− γ?
+

3C3Rµ
log(2)

BT,? log(T )

1− γ?
,

with C1, C2, C3 constant terms from Theorem 1 and β?H defined in Equation (26).

Proof First, note that our objective here is to bound the expected regret whereas Theorem 1 bounds the
pseudo-regret and gives a high probability upper-bound. We denote Eiδ = {θ̄t ∈ Eδt (θ̂t) for t s.t (i−
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1)H + 1 ≤ t ≤ min{iH, T}}. This event holds with probability higher than 1− δ. When Eiδ does
not hold, the maximum regret could theoretically be suffered for all time instants.

As explained in the algorithm mechanism, a new instance of BVD-GLM-UCB will be launched
every H steps with a discount factor selected by the EXP3 algorithm. Restarting a new algorithm
and forgetting previous information comes at a cost in terms of regret. This is made explicit in the
following decomposition of worker.

worker = EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)


= EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

〈µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)
∣∣∣{∩dT/Hei=1 Eiδ}

P
(
∩dT/Hei=1 Eiδ

)
︸ ︷︷ ︸

worker1

+ EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)
∣∣∣{∩dT/Hei=1 Eiδ}c

P
(
{∩dT/Hei=1 Eiδ}c

)
︸ ︷︷ ︸

worker2

Thanks to Lemma 1, Eiδ holds with probability higher than 1-δ. By setting δ = 1/T , we have

P
(
∪dT/Hei=1 (Eiδ)

c
)
≤ dT/He1/T . (27)

Under the event {∪dT/Hei=1 (Eiδ)
c} not much can be said. The maximum regret rmax = 2σ can be

suffered at every time step. Therefore, using the upper-bound from Eq. (27), we obtain

worker2 = EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)
∣∣∣{∪dT/Hei=1 (Eiδ)

c}

P
(
∪dT/Hei=1 (Eiδ)

c
)

≤ rmaxdT/He .

This term is related to the number of restarts of the algorithm. In the BOB framework, whatever
the worker algorithm (sliding window, restart factor) a cost of order T/H will be paid due to the
restarting of the worker at the beginning of each block.

On the contrary, under the event {∩dT/Hei=1 Eiδ}, using the assumption that the blocks are in-
dependent, we can follow the line of proof from Lemma 3 and Theorem 1 for every block. We
introduce,

βH =
√
λS + σ

√
2 log(T ) + d log

(
1 +

L2(1− γ2H
k )

λd(1− γ2
k)

)
. (28)
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worker1 = EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)
∣∣∣{∩dT/Hei=1 Eiδ}

P
(
∩dT/Hei=1 Eiδ

)

≤ EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt?, θt?〉)− µ(〈xt(γ̂), θt?〉)
∣∣∣{∩dT/Hei=1 Eiδ}


≤
dT/He∑
i=1

(
C1βH

√
dH

√
H log(1/γ̂) + log

(
1 +

L2

dλ(1− γ̂)

)
+ C2

γ̂D

1− γ̂
H + C3Bi,?D

)

≤ C1βH
√
dT

√
T log(1/γ̂) +

T

H
log

(
1 +

L2

dλ(1− γ̂)

)
+ C2

γ̂D

1− γ̂
T + C3BT,?D ,

where the second inequality is a consequence of Theorem 1. We set,

D =
3/2 log(T )

log(1/γ̂)
. (29)

Hence,

C3BT,?D ≤
3

2

C3BT,? log(T )

log(1/γ̂)

≤ 3C3

2 log(2)
BT,? log(T )

γ̂

1− γ̂
(Using log(x) ≥ log(2)(x− 1) for x ∈ [1, 2])

≤ 3C3

2 log(2)

BT,? log(T )

1− γk
(γ̂ ≤ 1)

≤ 3C3

log(2)

BT,? log(T )

1− γk+1
(Definition ofH)

≤ 3C3

log(2)

BT,? log(T )

1− γ?
(Lemma8) .

We also have,

C2
γ̂D

1− γ̂
T ≤ C2

1√
T

1

1− γ̂
(Equation (29))

≤ 2C2
1√
T

2

1− γk+1
(Definition ofH)

≤ 2C2
1√
T

1

1− γ?
(Lemma 8) .

Finally, using x 7→ log(x) ≤ x− 1 for x > 1 and Lemma 8, one has:

T log(1/γ̂) +
T

H
log

(
1 +

L2

dλ(1− γ̂)

)
≤ T 1− γ̂

γ̂
+
T

H
log

(
1 +

2L2

dλ(1− γ?)

)
≤ 2T (1− γ?) +

T

H
log

(
1 +

2L2

dλ(1− γ?)

)
.
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Following similar steps, we can upper-bound βH from Equation (28) by

βH ≤ β?H .

Bringing things together, we have shown that under the event {∩dT/Hei=1 Ei} all the terms depending on
γ̂ can be replaced by terms depending only on γ? at the cost of multiplicative constant independent
of T . Finally, one has

worker ≤ 2σ
T

H
+ C1Rµβ

?
H

√
dT

√
2T (1− γ?) +

T

H
log

(
1 +

2L2

dλ(1− γ?)

)
+ 2C2Rµ

1√
T

1

1− γ?
+

3C3Rµ
log(2)

BT,? log(T )

1− γ?
.

The above proposition bounds the regret incurred if the same discount factor γ̂ is used for each
block. To successfully upper bound BVD-GLM-UCB’s regret, we need to upper bound the second
part master which is the error due to the use of the EXP3 algorithm. This part can be controlled
thanks to the analysis proposed in Auer et al. (2002). Yet, two issues need to be overcome. (1) The
rewards received at the end of a block does not lie in [0, 1] which is required to use the result from
Auer et al. (2002). (2) We are in a stochastic environment with noisy rewards.

In the next proposition, we upper-bound the term of interest and explain how to deal with the two
issues. The big picture is the following: using the assumption on the bounded rewards we can obtain
an upper-bound for the maximum reward on a single block.

Proposition 4 The regret due to the master algorithm can be bounded in the following way,

EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt(γ̂), θt?〉)− EEXP3 [rt+1]

 ≤ 4σH
√
e− 1

√
T

H
card(H) log(card(H))

Proof We denote γi the discount factor chosen by the EXP3 algorithm in the i-th block. The regret
due to the use of the EXP3 main algorithm can be written as follows:

master = EN

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

µ(〈xt(γ̂), θt?〉)− EEXP3

dT/He∑
i=1

min{iH,T}∑
t=(i−1)H+1

rt+1

 .

We introduce Qi(γj) =
min{iH,T}∑
t=(i−1)H+1

rt+1(γj) =
min{iH,T}∑
t=(i−1)H+1

µ(〈xt(γj), θt?〉) + εt+1, using Equa-

tion (9). This quantity corresponds to the reward obtained on the i-th block when using BVD-GLM-UCB
with the discount factor γj . We also use Qi = maxγ∈HQi(γ).

Contrarily to existing works in the linear setting (e.g (Cheung et al., 2019b, Lemma3)) our
assumption on the bounded rewards is sufficient to solve both problems. We have, |Qi| ≤ 2σH
almost surely using rt ≤ 2σ for all time instants.

Let U = {∀t ≤ T, 0 ≤ rt ≤ 2σ}. Thanks to assumption 2, we have P(U) = 1.
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One has,

master ≤ EN

dT/He∑
i=1

Qi(γk)−max
γ∈H

dT/He∑
i=1

Qi(γ) + max
γ∈H

dT/He∑
i=1

Qi(γ)− EEXP3

dT/He∑
i=1

Qi(γi)


≤ EN

max
γ∈H

dT/He∑
i=1

Qi(γ)− EEXP3

dT/He∑
i=1

Qi(γi)


≤ EN

max
γ∈H

dT/He∑
i=1

Qi(γ)− EEXP3

dT/He∑
i=1

Qi(γi)

 ∣∣∣ U
P(U) .

We introduce

Yi(γj) =
Qi(γj)

2σH
.

For all γ inH, Yi(γ) lies in [0, 1]. Therefore,

master ≤ 2σHEN

max
γ∈H

dT/He∑
i=1

Yi(γ)− EEXP3

dT/He∑
i=1

Yi(γi)

 ∣∣∣ U
 .

The last step consists in using (Auer et al., 2002, Corollary 3.2). We have,

max
γ∈H

dT/He∑
i=1

Yi(γ) ≤ T

H
.

All the conditions of Corollary 3.2 in Auer et al. (2002) are met and we obtain:

master ≤ 4σH
√
e− 1

√
T

H
card(H) log(card(H)) .

The two parts of regret in Equation (25) are bounded in Proposition 3 and Proposition 4 respec-
tively. Combining them, we get our main result below:

Theorem 2 Under Assumptions 1-2, the regret of BOB-BVD-GLM-UCB when setting H = bd
√
T c

satisfies:

E[RT ] = Õ
(
Rµd

2/3T 2/3 max
(
BT,?, d

−1/2T 1/4
)1/3

)
.

Remark 5 This theorem establishes an upper-bound for the expected regret in the Generalized
Linear Bandits framework when the variational budget is unknown. When BT,? is sufficiently large
(BT,? ≥ d−1/2T 1/4) the obtained bound can not be improved. Yet, there is still a gap with the lower
bound when the variation budget is small. This can be explained by the frequent restarts in the BOB
framework.
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Proof Using Proposition 4 and Proposition 3, we obtain:

E [RT ] ≤ 2σ
T

H
+ C1Rµβ

?
H

√
dT

√
2T (1− γ?) +

T

H
log

(
1 +

2L2

dλ(1− γ?)

)
+ C2Rµ

2√
T

1

1− γ?
+

3C3Rµ
log(2)

BT,? log(T )

1− γ?
+ 4σH

√
e− 1

√
T

H
card(H) log(card(H))

First note that card(H) = N defined in Equation (21) scales as log(T ) and β?H scales as√
d log(T ). By plugging H = bd

√
T c in the upper-bound we obtain:

T

H
= O(d−1/2

√
T ) .

β?H
√
dT

√
2T (1− γ?) +

T

H
log

(
1 +

2L2

dλ(1− γ?)

)
= Õ

d√T
√√√√√max

 TB
2/3
T,?

d2/3T 2/3
,
T

d
√
T




= d2/3T 2/3 max(B
1/3
T,? , d

−1/6T 1/12)

= d2/3T 2/3(max(BT,?, d
−1/2T 1/4))1/3 .

1√
T

1

1− γ?
= O

 T 1/6

d2/3B
2/3
T,?

 .

BT,?
1− γ?

= O
(
d2/3B

1/3
T,?T

2/3
)
.

H

√
T

H
card(H) log(card(H)) = Õ

(
d1/2T 3/4

)
.

To conclude we notice that when BT,? ≤ d−1/2T 1/4,

d1/2T 3/4 = d2/3T 2/3(max(BT,?, d
−1/2T 1/4))1/3 .

On the contrary, when BT,? ≥ d−1/2T 1/4,

d1/2T 3/4 ≤ d2/3T 2/3(max(BT,?, d
−1/2T 1/4))1/3 .

Finally, keeping the highest order term yields the announced result.
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Appendix F. Experimental set-up

This section is dedicated at providing useful details about the illustrative experiments presented
in Section 5. The logistic setting at hand is characterized by the constants S = L = 1. At each
round, the environment randomly draws 10 news arms, presented to the agent. All algorithms use the
same `2 regularization parameter λ = 1. The sequence θt? evolves as follows: we let θt? = (0, 1) for
t ∈ [1, T/3]. Between t = T/3 and t = 2T/3 we smoothly rotate θt? from (0, 1) to (1, 0). Finally
we let θt? = (0, 1) for t ∈ [2T/3, T ]. Easy computations show that the total variation budget is

BT = (2T/3) sin

(
3π

4T

)
' 1.5 .

We used:

γ = 1−
(
BT
dT

)2/3

' 0.995,

recommended by the asymptotic analysis for D-LinUCB and BVD-GLM-UCB. We solve the projec-
tion step of GLM-UCB and BVD-GLM-UCB by (constrained) gradient-based methods, thanks to the
SLSQP solver of scipy.

Remark In our experiments, we did not report performances of the algorithms from Russac et al.
(2020a) (which use a similar projection step as in Filippi et al. (2010)). Because such algorithms are
based on discrete switches of the reward signal, their behavior in this slowly-varying environment is
largely sub-optimal. Indeed, in our experiment the number of abrupt-changes is ΓT = 1000. For
exponentially weighted algorithms, the recommended asymptotic value for the weights becomes
γ ' 0.70, which in turns leads to algorithms that over-estimate the non-stationary nature of the
problem, and perform poorly in practice.
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