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Abstract
This manuscript introduces the idea of using Distributionally
Robust Optimization (DRO) for the Counterfactual Risk Mini-
mization (CRM) problem. Tapping into a rich existing litera-
ture, we show that DRO is a principled tool for counterfactual
decision making. We also show that well-established solu-
tions to the CRM problem like sample variance penalization
schemes are special instances of a more general DRO prob-
lem. In this unifying framework, a variety of distributionally
robust counterfactual risk estimators can be constructed using
various probability distances and divergences as uncertainty
measures. We propose the use of Kullback-Leibler divergence
as an alternative way to model uncertainty in CRM and derive
a new robust counterfactual objective. In our experiments, we
show that this approach outperforms the state-of-the-art on
four benchmark datasets, validating the relevance of using
other uncertainty measures in practical applications.

1 Introduction
Learning how to act from historical data is a largely stud-
ied field in machine learning (Strehl et al. 2010; Dudı́k,
Langford, and Li 2011; Li et al. 2011; 2015), spanning a
wide range of applications where a system interacts with
its environment (e.g search engines, ad-placement and rec-
ommender systems). Interactions are materialized by the
actions taken by the system, themselves rewarded by a
feedback measuring their relevance. Both quantities can be
logged at little cost, and subsequently used to improve the
performance of the learning system. The Batch Learning
from Bandit Feedback (Swaminathan and Joachims 2015a;
2015b) (BLBF) framework describes such a situation, where
a contextual decision making process must be improved
based on the logged history of implicit feedback observed
only on a subset of actions. Counterfactual estimators (Bot-
tou et al. 2013) allow to forecast the performance of any
system from the logs, as if it was taking the actions by itself.
This enables the search for an optimal system, even with
observations biased towards actions favored by the logger.

A natural approach to carry out this search consists in fa-
voring systems that select actions with high empirical counter-
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factual rewards. However, this initiative can be rather burden-
some as it suffers a crucial caveat intimately linked with a phe-
nomenon known as the optimizer’s curse (Capen et al. 1971;
Smith and Winkler 2006; Thaler 2012). It indicates that sort-
ing actions by their empirical reward average can be sub-
optimal since the resulting expected post-decision surprise
is non-zero. In real life applications where the space of pos-
sible actions is often extremely large and where decisions
are taken based on very low sample sizes, the consequence
of this phenomenon can be dire and motivates the design
of principled robust solutions. As a solution for this Coun-
terfactual Risk Minimization (CRM) problem, the authors
of (Swaminathan and Joachims 2015a) proposed a modified
action selection process, penalizing behaviors resulting in
high-variance estimates.

In this paper, we argue that another line of reasoning re-
sides in using Distributional Robust Optimization (DRO)
for the CRM. It has indeed proven to be a powerful tool
both in decision theory (Duchi, Glynn, and Namkoong 2016;
Esfahani and Kuhn 2018; Blanchet and Murthy 2019)
and the training of robust classifiers (Madry et al. 2017;
Xiao et al. 2018; Hu et al. 2018). Under the DRO formu-
lation, one treats the empirical distribution with skepticism
and hence seeks a solution that minimizes the worst-case
expected cost over a family of distributions, described in
terms of an uncertainty ball. Using distributionally robust
optimization, one can therefore control the magnitude of the
post-decision surprise, critical to the counterfactual analysis.

We motivate the use of DRO for the CRM problem with
asymptotic guarantees and bring to light a formal link be-
tween the variance penalization solution of (Swaminathan
and Joachims 2015a) and a larger DRO problem for which
the uncertainty set is defined with the chi-square divergence.
Building from this, we propose the use of other uncertainty
sets and introduce a KL-based formulation of the CRM prob-
lem. We develop a new algorithm for this objective and bench-
mark its performance on a variety of real-world datasets. We
analyze its behavior and show that it outperforms existing
state-of-the-art methods.

The structure of the paper is the following: in Section 2
we formally introduce the BLBF framework and the CRM
problem. In Section 3 we present the DRO framework, moti-



vate it for CRM and re-derive the POEM (Swaminathan and
Joachims 2015a) algorithm as one of its special cases and
introduce a new CRM algorithm. In Section 4 we compare
this new algorithm with state-of-the-art CRM algorithms on
four public datasets and finally summarize our findings in
Section 5.

2 Batch Learning from Logged Bandit
Feedback

2.1 Notation and terminology
We denote x ∈ X arbitrary contexts drawn from an unknown
distribution ν and presented to the decision maker. Such a
quantity can describe covariate information about a patient
for a clinical test, or a potential targeted user in a recom-
mender system. The variable y ∈ Y denotes the actions
available to the decision maker - the potential medications
to give to the patient, or possible advertisements targeting
the user for instance. A policy is a mapping π : X → P (Y)
from the space of contexts to probabilities in the action space.
For a given (context, action) pair (x, y), the quantity π(y|x)
denotes the probability of the policy π to take the action y
when presented the context x. When picking the action y
for a given context x, the decision maker receives a reward
δ(x, y), drawn from an unknown distribution. In our exam-
ples, this reward could indicate a patient’s remission, or the
fact that the targeted user clicked on the displayed ad. This
reward δ(x, y) can also be assumed to be deterministic - as
in (Swaminathan and Joachims 2015a; 2015b). We make this
assumption in the rest of this manuscript. Finally, for a given
context x ∈ X and an action y ∈ Y , we define the cost
function c(x, y) , −δ(x, y).

In this paper, we try to find policies producing low ex-
pected costs. To make this search tractable, it is usual to
restrict the search to a family of parametric policies, hence-
forth tying policies πθ to a vector θ ∈ Θ. The risk:

R(θ) , Ex∼ν,y∼πθ(·|x) [c(x, y)] (1)

corresponds to the expected cost obtained by the policy πθ
through the different actions y taken, a quantity the decision
maker will try to minimize.

2.2 Counterfactual Risk Minimization
In practical applications, it is common that one has only
access to the interaction logs of a previous version of the
decision making system, also called a logging policy (de-
noted π0). More formally, we are interested in the case
where the only available data is a collection of quadruplets
H , (xi, yi, pi, ci)1≤i≤n, where the costs ci , c(xi, yi)
were obtained after taking an action yi with probability
pi , π0(yi|xi) when presented with a context xi ∼ ν.

In order to search for policies πθ with smaller risk than π0,
one needs to build counterfactual estimators for R(θ) from
the historicH. One way to do so is to use inverse propensity
scores (Rosenblum and Rubin 1983):

R(θ) = Ex∼ν,y∼πθ(x) [c(x, y)]

= Ex∼ν,y∼π0(x)

[
c(x, y)

πθ(y|x)

π0(y|x)

]
(2)

for any πθ absolutely continuous w.r.t π0. Henceforth, R(θ)
can be approximated with samples (xi, yi, pi, ci) from the
interaction logsH via the sample average approximation:

R(θ) ' 1

n

n∑
i=1

ci
πθ(yi|xi)

pi
(3)

Bluntly minimizing the objective provided by the counter-
factual risk estimator (3) is known to be sub-optimal, as it
can have unbounded variance (Ionides 2008). It is therefore a
classical technique (Bottou et al. 2013; Cortes, Mansour, and
Mohri 2010; Strehl et al. 2010; Swaminathan and Joachims
2015a) to clip the propensity weights . This leads to the
Clipped Inverse Propensity Scores (CIPS) estimator:

R̂n(θ) ,
1

n

n∑
i=1

ci min

(
M,

πθ(yi|xi)
pi

)
. (4)

The variableM is an hyper-parameter, balancing the variance
reduction brought by weight clipping and the bias introduced
in the empirical estimation ofR(θ). The search for a minimal
θ with respect to the estimator R̂n(θ) is often referred to as
Counterfactual Risk Minimization (CRM).

Remark 1 Other techniques have been proposed in the
literature to reduce the variance of the risk estimators. For
instance, the doubly robust risk (Dudı́k, Langford, and Li
2011) takes advantage of both counterfactual estimators and
supervised learning methods, while the self-normalized risk
(Swaminathan and Joachims 2015b) was designed to counter
the effect of a phenomenon known as propensity overfitting.
We do not explicitly cover them in our analysis, but the results
we derive hereinafter also hold for such estimators.

2.3 Sample-Variance Penalization
The main drawback of the CIPS estimator is that two different
policies can have risk estimates of highly different variance -
something the sample average approximation cannot capture.
The authors of (Swaminathan and Joachims 2015a) devel-
oped a variance-sensitive action selection process where one
penalizes policies with high-variance risk estimates. Their
approach is based on a sample-variance penalized version of
the CIPS estimator:

R̂λn(θ) , R̂n(θ) + λ
√
Vn(θ)/n, (5)

where λ is an hyper-parameter set by the practitioner,
and Vn(θ) denotes the empirical variance of the quantities
ci min

(
M, πθ(yi|xi)

pi

)
. The main motivation behind this ap-

proach is based on confidence bounds derived in (Maurer
and Pontil 2009), upper-bounding with high-probability the
true risk R(θ) by the empirical risk R̂n(θ) augmented with
an additive empirical variance term. In a few words, this
allows to build and optimize a pessimistic envelope for the
true risk and penalize policies with high variance risk esti-
mates. The authors of (Swaminathan and Joachims 2015a)
proposed the Policy Optimization for Exponential Models
(POEM) algorithm and showed state-of-the-art results on a



collection of counterfactual tasks when applying this method
to exponentially parametrized policies:

πθ(y|x) ∝ exp
(
θTφ(x, y)

)
, (6)

with φ(x, y) being a d-dimensional joint feature map.

3 Distributionally Robust Counterfactual
Risk Minimization

3.1 Motivating distributional robustness for CRM
For more concise notations, let us introduce the variable
ξ = (x, y), the distribution P = ν⊗π0 and the loss `(ξ, θ) ,
c(x, y) min

(
M, πθ(y|x)

π0(y|x)

)
. The minimization of the counter-

factual risk (2), now writes θ? , argminθ∈Θ Eξ∼P [`(ξ, θ)]

and its empirical counterpart θ̂n , argminθ∈Θ R̂n(θ). The
consistency of the estimator θ̂n holds under general condi-
tions and the empirical risk converges to the optimal true risk
(Vapnik 1992):

Eξ∼P [`(ξ; θ?)]− R̂n(θ̂n) −→
n→∞

0 (7)

However, one of the major drawbacks of this approach is that
the empirical risk R̂n(θ) cannot be used as a performance
certificate for the true risk Eξ∼P [`(ξ; θ)]. Indeed, one will
fail at controlling the true risk of any parameter θ since by
the Central Limit Theorem:

lim
n→∞

P
(
Eξ∼P [`(ξ; θ)] ≤ R̂n(θ)

)
= 1/2 (8)

One way to circumvent this limitation is to treat the empir-
ical distribution P̂n with skepticism and to replace it with an
uncertainty set Uε(P̂n) of distributions around P̂n with ε > 0

a parameter controlling the size of the uncertainty set Uε(P̂n).
This gives rise to the distributionally robust counterfactual
risk:

R̃Un (θ, ε) , max
Q∈Uε(P̂n)

Eξ∼Q[`(ξ; θ)]. (9)

Minimizing this quantity w.r.t to θ yields the general DRO
program:

θ̃n , argminθ∈Θ R̃
U
n (θ, ε)

= argmin
θ∈Θ

max
Q∈Uε(P̂n)

Eξ∼Q[`(ξ; θ)]. (10)

There is liberty on the way to construct the uncertainty
set Uε(P̂n) including parametric (Madry et al. 2017; Xiao et
al. 2018) and non-parametric designs (Parys, Esfahani, and
Kuhn 2017; Sinha, Namkoong, and Duchi 2017; Blanchet
and Murthy 2019). Moreover, for well chosen uncertainty
sets (Duchi, Glynn, and Namkoong 2016), one can prove
performance guarantees asserting that asymptotically (in the
limit n→∞), for all θ ∈ Θ:

Eξ∼P [`(ξ; θ)] ≤ R̃Un (θ, εn) w.h.p

and Eξ∼P [`(ξ; θ)]− R̃Un (θ, εn)→ 0

The robust risk therefore acts as a consistent certificate on the
true risk. We believe that these properties alone are enough to

motivate the use of DRO for the CRM problem, as it provides
an elegant way to design consistent asymptotic upper bounds
for the true risk and ensure a small post-decision surprise.
We detail such guarantees in the next subsection. Later, we
draw links between DRO and the POEM, showing that a
wide variety of DRO problems account for the empirical
variance of the samples, therefore mitigating the limitations
of empirical averages as discussed in Section 2.2.

3.2 Guarantees of robustified estimators with
ϕ-divergences

We are interested in DRO instances that are amenable to
direct optimization. To this end, we focus here only on uncer-
tainty sets Uε(P̂n) based on information divergences (Csiszár
1967), since they strike a nice compromise between ease of
implementation and theoretical guarantees that will reveal
useful for the CRM problem. The use of information diver-
gences for DRO has already been largely studied in several
works (for example (Duchi, Glynn, and Namkoong 2016;
Gotoh, Kim, and Lim 2018)). For the sake of completeness,
we now recall in Definition 1 the definition of information
divergences.

Definition 1 (ϕ-divergences). Let ϕ be a real-valued, convex
function such that ϕ(1) = 0. For a reference distribution P ,
the divergence of another distribution Q with respect to P is
defined by

Dϕ(Q‖P ) ,

{∫
ϕ(dQ/dP )dP, if Q� P,

+∞, else.
. (11)

Subsequently, the definition of the uncertainty set Uε relies
only on ϕ-divergences as follows:

Uε(P̂n) =
{
Q | Dϕ(Q‖P̂n) ≤ ε

}
. (12)

We need to ensure that the set of ϕ-divergences used to
define the resulting robust risk R̃

ϕ

n(θ, ε) satisfies some basic
coherence properties. We therefore make further assumptions
about the measure of risk ϕ to narrow the space of informa-
tion divergences we consider:

Assumption 1 (Coherence). ϕ is a real-valued function sat-
isfying:

• ϕ is convex and lower-semi-continuous
• ϕ(t) =∞ for t < 0, and ϕ(t) ≥ ϕ(1) = 0, ∀t ∈ R
• ϕ is twice continuously differentiable at t = 1 with
ϕ′(1) = 0 and ϕ′′(1) > 0

The axioms presented in Assumption 1 have been proposed
and studied extensively in (Rockafellar 2018). Examples
of coherent divergences include the Chi-Square, Kullback-
Leibler divergences and the squared Hellinger distance.

Before stating the announced asymptotic guarantees, we
make further assumptions on the structure of both the context
and parameter spaces.

Assumption 2 (Structure). .

• Θ is a compact subset of some Rd.



• X is a compact subset of some RD.

We now state Lemma 1 which provides asymptotic certifi-
cate guarantees for the robust risk, asymptotically controlling
the true counterfactual risk Eξ∼P [`(ξ; θ)] with high proba-
bility. It is easy to show that under Assumptions 1 and 2,
Lemma 1 can be obtained by a direct application of Proposi-
tion 1 of (Duchi, Glynn, and Namkoong 2016).
Lemma 1 (Asymptotic guarantee - Proposition 1 of (Duchi,
Glynn, and Namkoong 2016)). Under Assumptions 1 and
2, for a fixed level of confidence δ ∈ (0, 1], we have that
∀θ ∈ Θ:

lim
n→∞

P
(
Eξ∼P [`(ξ; θ)] ≤ R̃

ϕ

n(θ, εn)
)
≥ 1− δ (13)

where εn is defined by the (1 − δ) Chi-Squared quantile,
εn(δ) = χ2

1,1−δ/n.

Proof. The proof mainly consists in showing that under As-
sumptions 1 and 2, the conditions for applying the Propo-
sition 1 of (Duchi, Glynn, and Namkoong 2016) are ful-
filled.

For the CRM problem, this result is of upmost importance
as it allows us to control the post-decision surprise suffered
for a given policy πθ and allows for a pointwise control of
the true risk.

Remark 2 A stronger result than Lemma 1 would control
with high probability the true risk of the robustified policy
Eξ∼P [`(ξ; θ̃n)] with the optimal value R̃Un (θ̃n, εn). It is easy
to see that, if P ∈ Uε, then Eξ∼P [`(ξ; θ̃n)] ≤ R̃Un (θ̃n, εn),
hence P(Eξ∼P [`(ξ; θ̂n)] ≤ R̃Un (θ̃n, εn)) ≥ P(P ∈ Uε). By
exhibiting strong rates of convergence of the empirical distri-
bution P̂n towards the true distribution P , such a result could
be reached. Under mild assumptions on P , this guarantee has
been proved in (Esfahani et al. 2017) for Wasserstein based
uncertainty sets. In our current case where Uε is defined by
information divergences this result holds solely under the
assumption that P is finitely supported (Van Parys, Esfa-
hani, and Kuhn 2017), a plausible situation when the logging
policy is defined on a finite number of (context, action) pairs.

3.3 Equivalences between DRO and SVP
In this subsection, we focus on stressing the link between
DRO and sample variance penalization schemes as used in
the POEM algorithm. In Lemma 2, we present an asymptotic
equivalence between the robust risk (defined with coherent
ϕ divergences) and the SVP regularization used in POEM.
This Lemma is a specific case of existing results, already
detailed in (Duchi, Glynn, and Namkoong 2016; Namkoong
and Duchi 2017) and (Gotoh, Kim, and Lim 2017; 2018).
Lemma 2 (Asymptotic equivalence - Theorem 2 of (Duchi,
Glynn, and Namkoong 2016)). Under Assumptions 1 and 2,
for any ε ≥ 0, integer n > 0 and θ ∈ Θ we have:

R̃
ϕ

n(θ, εn) = R̂n(θ) +
√
εnVn(θ) + αn(θ), (14)

with supθ
√
n|αn(θ)| P−→ 0 and εn = ε/n.

Proof. The proof is rather simple, as one only needs to show
that the assumptions behind Theorem 2 of (Duchi, Glynn,
and Namkoong 2016) are satisfied.

This expansion gives intuition on the practical effect of the
DRO approach: namely, it states that the minimization of the
robust risk R̃

ϕ

n(θ) based on coherent information divergences
is asymptotically equivalent to the POEM algorithm. This
link between POEM and DRO goes further: the following
Lemma states that sample-variance penalization is an exact
instance of the DRO problem when the uncertainty set is
based on the chi-square divergence.
Lemma 3 (Non-asymptotic equivalence). Under Assump-
tion 2, for χ2-based uncertainty sets, for any ε ≥ 0 small
enough, integer n > 0 and θ ∈ Θ we have:

R̃
χ2

n (θ, ε) = R̂n(θ) +
√
εVn(θ). (15)

Proof. The line of proof is similar to the proof of Theorem
3.2 of (Gotoh, Kim, and Lim 2018). To ease notations, we
denote Z , `(ξ, θ). Let’s consider ϕ a coherent information
divergence and ϕ∗(z) , sup

t>0
zt− ϕ(t) its convex conjugate.

By strong duality:

sup
Dϕ(Q‖P̂n)≤ε

EQ[Z] = inf
γ≥0

γε+ sup
Q

(EQ[Z]− γDϕ(Q‖P̂n))

Theorem 4 of (Rockafellar 2018) states that:

sup
Q

(EQ[Z]− γDϕ(Q‖P̂n)) =

inf
c∈R

(c+ γEP̂n [ϕ∗((Z − c)/γ)])

Hence we obtain that:

sup
Dϕ(Q‖P̂n)≤ε

EQ[Z] = inf
γ≥0

γε+

+ inf
c∈R

(c+ γEP̂n [ϕ∗((Z − c)/γ)])

In the specific case of the modified χ2 divergence, ϕ(z) =
(z − 1)2 and its convex conjugate is ϕ?(z) = z + z2/4
for z > −2. It is easy to check that for ε small enough,
(Z − c)/γ > −2 holds almost surely under P̂n. Solving
infc∈R(c+ γEP̂n [ϕ∗((Z − c)/γ)]) leads to:

sup
Dϕ(Q‖P̂n)≤ε

EQ[Z] = EP̂n [Z] + inf
γ≥0

(
γε+

1

4γ
Vn(Z)

)
= EP̂n [Z] +

√
εVn(Z)

hence the announced result.

In the case of χ2-based uncertainty sets, the expansion of
Lemma 2 holds non-asymptotically, and the POEM algorithm
can be interpreted as the minimization of the distributionally
robust risk R̃

χ2

n (θ, ε). To the best of our knowledge, it is
the first time that a finite sample equivalence is established
between counterfactual risk minimization with SVP (Swami-
nathan and Joachims 2015a) and DRO.



3.4 Kullback-Leibler based CRM
Among information divergences, we are interested in the
ones that allow tractable optimization. Going towards this
direction, we investigate in this subsection the robust counter-
factual risk generated by Kullback-Leibler (KL) uncertainty
sets and stress its efficiency. The KL divergence is a coherent
ϕ-divergence, with ϕ(z) , z log(z) + z − 1 for z > 0 and
ϕ(z) = ∞ elsewhere. The robust risk R̃

KL

n (θ, ε) therefore
benefits from the guarantees of Lemma 1. Furthermore, it en-
joys a simple analytic formula stated in Lemma 4 that allows
for direct optimization.
Lemma 4 (Kullback-Leibler Robustified Counterfactual
Risk). Under Assumption 2, the robust risk defined with
a Kullback-Leibler uncertainty set can be rewritten as:

R̃
KL

n (θ, ε) = inf
γ>0

(
γε+ γ logEξ∼P̂n [exp(`(ξ; θ)/γ)]

)
(16)

= E
ξ∼P̂γ

?
n (θ)

[`(ξ; θ)]. (17)

where P̂ γn denotes the Boltzmann distribution at temperature
γ > 0, defined by

P̂ γn (ξi|θ) =
exp(`(ξi; θ)/γ)∑n
j=1 exp(`(ξj ; θ)/γ)

.

Proof. To ease notations, we denote Z , `(ξ, θ). As in the
proof of Lemma 3, one can obtain that:

max
KL(Q||P̂n)≤ε

EQ[`(ξ; θ)] = inf
γ≥0

{
γε+

inf
c∈R

(
c+ γEP̂n [ϕ∗KL((Z − c)/γ)]

)}
Since ϕKL(z) = z log z − z + 1, it is a classical con-
vex analysis exercise to show that its convex conjugate is
ϕ∗KL(z) = ez − 1. Therefore:

max
KL(Q||P̂n)≤ε

EQ[`(ξ; θ)] = inf
γ≥0

{
γε+

inf
c∈R

(
c+ γEP̂n [e(Z−c)/γ − 1]

)}
Solving

inf
c∈R

(
c+ γEP̂n [e(Z−c)/γ − 1]

)
is straightforward and leads to:

max
KL(Q||P̂n)≤ε

EQ[`(ξ; θ)] = inf
γ≥0

{
γε+ γ logEP̂n

[
eZ/γ

]}
(18)

Differentiating the r.h.s and setting to 0 shows that the optimal
γ is solution to the fixed-point equation:

γ =
EP̂γn [Z]

ε+ log(EP̂n [eZ/γ ])
(19)

where dP̂ γn (z) := (1/EP̂n [ez/γ ])ez/γdP̂n(z) is the density
of the Gibbs distribution at temperature γ and state degenera-
cies P̂n. Replacing this value for γ in the r.h.s of (18) yields
the announced result. This formula has also been obtained in
(Hu and Hong 2013), using another line of proof.

A direct consequence of Lemma 4 is that the worst-case
distribution in the uncertainty set (defined by the KL diver-
gence) takes the form of a Boltzmann distribution. Hence-
forth, minimizing the associated robust risk is equivalent with
the optimization of the following objective:

R̃
KL

n (θ) =

∑n
i=1 `(ξi; θ) exp(`(ξi; θ)/γ

?)∑n
j=1 exp(`(ξj ; θ)/γ?)

. (20)

From an optimization standpoint this amounts to replacing
the empirical distribution of the logged data with a Boltzmann
adversary which re-weights samples in order to put more
mass on hard examples (examples with high cost).

In what follows, we call KL-CRM the algorithm minimiz-
ing the objective (20) while treating γ? as a hyper-parameter
that controls the hardness of the re-weighting. A small value
for γ? will lead to a conservative behavior that will put more
weight on actions with high propensity cost. In the limit when
γ? → 0, the robust risk only penalizes the action with highest
propensity re-weighted cost. On the other end, a very large
γ? brings us back in the limit to the original CIPS estimator
where the samples have equal weights. In a naive approach,
this parameter can be determined through cross-validation
and kept constant during the whole optimization procedure.

Lemma 5 goes further into the treatment of the optimal
temperature parameter γ∗ and provides an adaptive rule for
updating it during the robust risk minimization procedure.
Lemma 5. The value of the optimal temperature parameter
γ∗ can be approximated as follows:

γ∗ ≈
√
Vn(θ)

2ε
. (21)

Proof. To ease notations, we denote Z , `(ξ, θ). The log
moment generating function :

Φ : α→ logEP̂n
[
eZα

]
(22)

is well defined as P̂n has finite support and Z is bounded a.s.
It checks the following equalities:

Φ(0) = 0

Φ′(0) = EP̂n [Z]

Φ′′(0) = Vn(Z)

and a second-order Taylor expansion around 0 yields:

Φ(α) = αEP̂n [Z] +
α2

2
Vn(Z) + o0(α2)

With α = 1/γ and injecting this result in the r.h.s of Equa-
tion (18) yields:

max
KL(Q||P̂n)≤ε

EQ[`M (ξ; θ)] = inf
γ≥0

{
γε+ EP̂n [Z] +

Vn(Z)

2γ
+ o∞(1/γ)

}
Solving (approximately) the r.h.s of the above equation yields
as announced:

γ '
√
Vn(Z)

2ε



Algorithm 1: aKL-CRM
inputs : H = {(x1, y1, p1, c1), . . . , (xn, yn, pn, cn)},

parametrized family of policies πθ
hyper-parameters: clipping constant M , uncertainty

set size ε
1 repeat
2 compute the counterfactual costs

zi ← ci min(M,πθ(yi|xi)/pi) for i = 1, . . . , n
3 compute the optimal temperature

γ? ←
√∑n

j=1 (zi − z̄)2
/(2ε), where

z̄ =
∑n
j=1 zi/n

4 compute the normalized costs si ← ei/
∑n
j=1 ej

for i = 1, . . . , n, where ei = ezi/γ
?

5 compute the re-weighted loss L←
∑n
i=1 zisi

6 update θ by applying an L-BFGS step to the loss
L

7 until convergence;

This results implies that γ∗ should be updated concurrently
to the parameter θ during the minimization of the robustified
risk (20). This leads to an algorithm we call adaptive KL-
CRM, or aKL-CRM. Pseudo-code for this algorithm is pro-
vided in Algorithm 1. As for POEM and KL-CRM, its hyper-
parameter ε can be determined through cross-validation.

4 Experimental results
It is well known that experiments in the field of counterfac-
tual reasoning are highly sensitive to differences in datasets
and implementations. Consequently, to evaluate and com-
pare the two algorithms we previously introduced to existing
solutions, we rigorously follow the experimental procedure
introduced in (Swaminathan and Joachims 2015a) and used
in several other works - such as (Swaminathan and Joachims
2015b) since then. It relies on a supervised to unsupervised
dataset conversion (Agarwal et al. 2014) to build bandit feed-
back from multi-label classification datasets. As in (Swami-
nathan and Joachims 2015a), we train exponential models

πθ(y|x) ∝ exp
(
θTφ(x, y)

)
for the CRM problem and use the same datasets taken from
the LibSVM repository. For reproducibility purposes, we
used the code provided by its authors 1 for all our experi-
ments.

4.1 Methodology
For any multi-label classification tasks, let us note x the input
features and y? ∈ {0, 1}q the labels. The full supervised
dataset is denoted D? , {(x1, y

?
1), . . . , (xN , y

?
N )}, and is

split into three parts: D?train, D?valid, D?test. For every of the
four dataset we consider (Scene, Yeast, RCV1-Topics and
TMC2009), the split of the training dataset is done as follows:
75% goes to D?train and 25% to D?valid. The test dataset Dtest
is provided by the original dataset. As in (Swaminathan and

1http://www.cs.cornell.edu/∼adith/POEM/index.html

Scene Yeast RCV1-Topics TMC2009
π0 1.529 5.542 1.462 3.435

CIPS 1.163 4.658 0.930 2.776
POEM 1.157 4.535 0.918 2.191

KL-CRM 1.146 4.604 0.922 2.136
aKL-CRM 1.128 4.553 0.783 2.126

CRF 0.646 2.817 0.341 1.187

Table 1: Expected Hamming loss on D∗test for the different
algorithms, averaged over 20 independent runs. Bold font
indicate that one or several algorithms are statistically better
than the rest, according to a one-tailed paired difference t-test
at significance level of 0.05.

Joachims 2015a), we use joint features maps φ(x, y) = x⊗y
and train a Conditional Random Field (Lafferty, McCallum,
and Pereira 2001) (CRF) on a fraction (5%, randomly con-
stituted) of D?train. This CRF has access to the full supervised
feedback and plays the role of the logging policy π0. That
is, for every xi ∈ D?, a label prediction yi is sampled from
the CRF with probability pi. The quality of this prediction is
measured through the Hamming loss: ci =

∑q
l=1 |yl − y?l |.

The logged bandit dataset is consequently generated by run-
ning this policy through D?train for ∆ = 4 times (∆ is the
replay count). After training, the performances of the differ-
ent policies π are reported as their expected Hamming loss on
the held-out set D?test. Every experiment is run 20 times with
a different random seed (which controls the random training
fraction for the logging policy and the creation of the bandit
dataset).

For each dataset we compare our algorithm with the naive
CIPS estimator and the POEM. For all four algorithms (CIPS,
POEM, KL-CRM , aKL-CRM ), the numerical optimization
routine is deferred to the L-BFGS algorithm. As in (Swami-
nathan and Joachims 2015a), the clipping constant M is al-
ways set to the ratio of the 90%ile to the 10%ile of the propen-
sity scores observed in logsH. Other hyper-parameters are
selected by cross-validation on D?valid with the unbiased coun-
terfactual estimator (3). In the experimental results, we also
report the performance of the logging policy π0 on the test
set as an indicative baseline measure, and the performance
of a skyline CRF trained on the whole supervised dataset,
despite of its unfair advantage.

4.2 Results
Table 1 reports the expected Hamming loss of the poli-
cies obtain with different algorithms on the Scene, Yeast,
RCV1-Topics and TMC2007 dataset, averaged on 20 random
seeds. The results reported for the baselines are coherent
with (Swaminathan and Joachims 2015a). On each dataset,
aKL-CRM comes out at one of the best algorithm (according
to a one-tailed paired difference t-test at significance level
0.05) and outperforming the POEM baseline on three out of
four datasets. The results for KL-CRM are more mitigated:
it outperforms POEM on two datasets, but shows weaker
performance on the two others clearly stressing the efficiency
of an adaptive temperature parameter.



Scene Yeast RCV1-Topics TMC2009
CIPS 1.163 4.369 0.929 2.774

POEM 1.157 4.261 0.918 2.190
KL-CRM 1.146 4.316 0.922 2.134
aKL-CRM 1.128 4.271 0.779 2.034

Table 2: Hamming loss on D∗test for the different greedy poli-
cies, averaged over 20 independent runs. Bold font indicates
that one or several algorithms are statistically better than
the rest, according to a one-tailed paired difference t-test at
significance level of 0.05.

As in (Swaminathan and Joachims 2015a), we can further
evaluate the quality of the learned policies by evaluating
the Hamming loss of their greedy version (selecting only
the arm that is attributed the most probability mass by the
policy). This comes at less expense that sampling from the
policy as this does not require to compute the normalizing
constant in (6). These results are reported in Table 2, and are
consistent with the conclusions of Table 1. One can note that
the improvement brought by aKL-CRM over POEM is even
sharper under this evaluation.

Another experiment carried in (Swaminathan and
Joachims 2015a) focuses on the size of the bandit dataset
H. This quantity can be easily modulated by varying the re-
play count ∆ - the number of times we cycle throughD?train to
create the logged feedbackH. Figure 1 reports the expected
Hamming loss of policies trained with the POEM, KL-CRM
and aKL-CRM algorithms for different value of ∆, ranging
from 1 to 256, and based on the Yeast and Scene datasets.
Results are averaged over 10 independent runs. For large
values of ∆ (that is large bandit dataset) all algorithms seem
to confound; this is to be expected as Lemma 2 states that
for any coherent ϕ-divergences, all robust risks are asymp-
totically equivalent. It also stands out that for small replay
counts (i.e the small data regime, a more realistic case), the
KL-based algorithms outperform POEM.

5 Conclusion
We presented in this work a unified framework for counter-
factual risk minimization based on the distributionally robust
optimization of policies and motivated it by asymptotic guar-
antees available when the uncertainty measure is based on
ϕ-divergences. We showed that this new framework gen-
eralizes existing solutions, like sample-variance penalized
counterfactual risk minimization algorithms (Swaminathan
and Joachims 2015a). Our work therefore opens a new av-
enue for reasoning about counterfactual optimization with
logged bandit feedback as we showed that a KL-divergence
based formulation of the counterfactual DRO problem can
lead to tractable and efficient algorithms for the CRM prob-
lem, outperforming state-of-the-art results on a collection of
datasets.

The authors of (Swaminathan and Joachims 2015a) also
proposed a modification to the POEM algorithm that can be
optimized at scale using stochastic gradient descent. Future
work should therefore aim at developing stochastic optimiza-
tion schemes for both KL-CRM and aKL-CRM so that they

20 21 22 23 24 25 26 27 28

# replay count 

3.2

3.4

3.6

3.8

4.0

4.2

e
x
p

e
ct

e
d

 H
a
m

m
in

g
 l
o
ss

(a) Yeast dataset
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(b) Scene dataset

Figure 1: Impact of the replay count ∆ on the expected Ham-
ming loss. Results are average over 10 independent runs, that
is 10 independent train/test split and bandit dataset creation.
KL-CRM and aKL-CRM outperform POEM in the small
data regime.

could handle large datasets. From the perspective of experi-
mental evaluation, measuring the impact of the DRO formu-
lation on the doubly robust (Dudı́k, Langford, and Li 2011)
and the self-normalized (Swaminathan and Joachims 2015b)
estimators would further validate its relevance for real world
problems. Finally, a more theoretical line of work could focus
on proving finite-samples performance certificate guarantees
for distributionally robust estimators based on coherent ϕ-
divergences, further motivating their use for counterfactual
risk minimization.
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