Distributionally Robust Counterfactual Risk Minimization Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova, Flavian Vasile Criteo Al Lab

Key Take Away Message

- We show that DRO provides a **principled** and **general** framework for the CRM problem.
- DRO estimators enjoy asymptotic **consistency** and **performance certificate** guarantees, crucial for CRM.
- We derive a **new** CRM algorithm based on the DRO formulation, **outperforming SOTA** on synthetic datasets.

Offline Policy Optimization

criteol.

- learning how to act from historical data with **implicit feedback**.
- improve the current version of a search-engine, recommender system (also applications to clinical trials).

Notations

Task

- contexts $x \in \mathcal{X}$ drawn under ν
- actions $y \in \mathcal{A}$ drawn under a policy π
- cost c(x, y) when taking action y to context x

Objective

Minimize the **risk** of the policy π :

 $\min_{\pi} R(\pi) = \mathbb{E}_{x \sim \nu, y \sim \pi} \left[c(x, y) \right]$

when the only available data is the **interaction logs** of another policy π_0 :

 $\mathcal{H}_0 = \left(x_i, y_i, p_i = \pi_0(y_i | x_i), c_i = c(x_i, y_i)\right)_{1 \le i \le n}$

To reduce the variance, we prefer the use of clipped propensity scores

$$\min_{\pi} \hat{R}_n(\pi) = \frac{1}{n} \sum_{i=1}^n c_i \min\left(M, \frac{\pi(x_i|y_i)}{p_i}\right)$$

DRO: a general and principled framework for CRM

• Performance certificate:

$$\lim_{n \to \infty} \mathbb{P}\left(R(\pi) \le \tilde{R}_n^{\varphi}(\pi, \epsilon_{n,\delta})\right) \ge 1 - \delta$$

Variance penalization:

$$\tilde{R}_{n}^{\varphi}(\pi,\epsilon_{n}) = \hat{R}_{n}(\pi) + \sqrt{\epsilon_{n}V_{n}(\pi)} + o\left(\frac{1}{\sqrt{n}}\right)$$

KL-CRM Algorithms

DRO with **KL-divergence uncertainty sets**: $\min_{\pi} \max_{KL(Q||\hat{P}_n) \le \varepsilon} \mathbb{E}_{\xi \sim Q}[\ell(\xi;\theta)]$

- The worst-case distribution takes the form of a Boltzmann distribution
- This leads to minimizing the new CRM objective:

$$\tilde{R}_{n}^{\text{KL}}(\pi) = \frac{\sum_{i=1}^{n} \ell(\xi_{i}; \pi) \exp(\ell(\xi_{i}; \pi) / \gamma^{\star})}{\sum_{j=1}^{n} \exp(\ell(\xi_{j}; \pi) / \gamma^{\star})}.$$

(γ^* is an hyperparameter). We call this algorithm **KL-CRM**.

Challenges and Existing Solutions

Main challenges

• The estimator $\hat{R}_n(\pi)$ can have a very high variance. • $\hat{R}_n(\pi)$ does not provide a performance certificate: $\hat{R}_n(\pi) \stackrel{?}{\leqslant} R(\pi)$ w.h.p

 \Rightarrow This makes the naive estimator hazardous in practice.

Existing solution

• Counterfactual Risk Minimization (POEM, Swaminathan et al, 2015):

 $\min_{\pi} \hat{R}_n^{\lambda} = \hat{R}_n(\pi) + \lambda \sqrt{\operatorname{Var}_n(\pi)}/n$

with $\operatorname{Var}_n(\pi)$ is the empirical variance of the counterfactual costs. • Provides a variance-dependent, consistent performance certificate. • Can be augmented with **variance-reduction** techniques (Dudik & al 2011, Swaminathan & Joachims, 2015b), also covered by our work.

Distributionally Robust Optimization (DRO)

• The optimal temperature γ^* can be approximated:

 γ^* should be updated concurrently to the π during training. We call this algorithm **aKL-CRM**.

Experimental results

We follow the experimental procedure introduced in (Swaminathan et al, 2015). It is a supervised \rightarrow unsupervised dataset conversion to build bandit feedback from four multi-label classification datasets. aKL-CRM equals or outperforms SOTA.

Scene Yeast RCV1-Topics TMC2009

			▲	
CIPS	1.163	4.369	0.929	2.774
POEM	1.157	4.261	0.918	2.190
KL-CRM	1.146	4.316	0.922	2.134
aKL-CRM	1.128	4.271	0.779	2.034

Table 1: Hamming loss on $\mathcal{D}^*_{\text{test}}$ for the different greedy policies, averaged over 20 independent runs. Bold font indicates that one or several algorithms are statistically better than the rest, according to a one-tailed paired difference t-test at significance level of 0.05.

• Let introduce $\ell(\xi, \theta) = c(x, y) \min\left(M, \frac{\pi_{\theta}(y|x)}{\pi_0(y|x)}\right)$ and $P = \nu \otimes \pi$. • DRO treats the empirical distribution \hat{P}_n with **skepticism**: $\tilde{R}_{n}^{\mathcal{U}}(\theta,\epsilon) \triangleq \max_{Q \in \mathcal{U}_{\epsilon}(\hat{P}_{n})} \mathbb{E}_{\xi \sim Q}[\ell(\xi;\theta)].$

where $\mathcal{U}_{\epsilon}(\hat{P}_n)$ is a distributional ambiguity set around \hat{P}_n .

• For ambiguity sets based on **coherent** φ -divergence, DRO estimators enjoy nice asymptotic guarantees for CRM (see below).

• POEM is a particular instance of DRO, with χ^2 divergence.

 \Rightarrow DRO therefore provides a **general, principled** framework for CRM.

Another experiment focuses on the impact of the size of the bandit dataset:

• For large datasets, all algorithms confound (as expected). • For small datasets, the KL-based algorithms outperform POEM.

Future work

• Can we derive **finite sample guarantees** for DRO-based estimators? • Can other tractable algorithms be derived from the DRO formulation?