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Key Take Away Message

•We show that DRO provides a principled and general framework for the CRM problem.
•DRO estimators enjoy asymptotic consistency and performance certificate guarantees, crucial for CRM.
•We derive a new CRM algorithm based on the DRO formulation, outperforming SOTA on synthetic datasets.

Offline Policy Optimization

Task
• learning how to act from historical data with implicit feedback.
• improve the current version of a search-engine, recommender system (also
applications to clinical trials).

Notations
• contexts x ∈ X drawn under ν
• actions y ∈ A drawn under a policy π
• cost c(x, y) when taking action y to context x
Objective
Minimize the risk of the policy π:

min
π
R(π) = Ex∼ν,y∼π [c(x, y)]

when the only available data is the interaction logs of another policy π0:

H0 =
(
xi, yi, pi = π0(yi|xi), ci = c(xi, yi)

)
1≤i≤n

To reduce the variance, we prefer the use of clipped propensity scores

min
π
R̂n(π) = 1

n

n∑
i=1
cimin

M,
π(xi|yi)
pi



Challenges and Existing Solutions

Main challenges
•The estimator R̂n(π) can have a very high variance.
• R̂n(π) does not provide a performance certificate:

R̂n(π)
?
6 R(π) w.h.p

⇒ This makes the naive estimator hazardous in practice.
Existing solution
•Counterfactual Risk Minimization (POEM, Swaminathan et al, 2015):

min
π
R̂λ
n = R̂n(π) + λ

√
V̂arn(π)/n

with V̂arn(π) is the empirical variance of the counterfactual costs.
•Provides a variance-dependant, consistent performance certificate.
•Can be augmented with variance-reduction techniques (Dudik & al
2011, Swaminathan & Joachims, 2015b), also covered by our work.

Distributionally Robust Optimization (DRO)

•Let introduce `(ξ, θ) = c(x, y) min
(
M, πθ(y|x)

π0(y|x)

)
and P = ν ⊗ π.

•DRO treats the empirical distribution P̂n with skepticism:
R̃Un (θ, ε) , max

Q∈Uε(P̂n)
Eξ∼Q[`(ξ; θ)].

where Uε(P̂n) is a distributional ambiguity set around P̂n.
•For ambiguity sets based on coherent ϕ-divergence, DRO estimators
enjoy nice asymptotic guarantees for CRM (see below).

•POEM is a particular instance of DRO, with χ2 divergence.

⇒ DRO therefore provides a general, principled framework for CRM.

DRO (ctd’)

DRO: a general and principled framework for CRM
•Performance certificate:

lim
n→∞ P

(
R(π) ≤ R̃

ϕ

n(π, εn,δ)
)
≥ 1− δ

•Variance penalization:

R̃
ϕ

n(π, εn) = R̂n(π) +
√
εnVn(π) + o

( 1√
n

)

KL-CRM Algorithms

DRO with KL-divergence uncertainty sets:
min
π

max
KL(Q||P̂n)≤ε

Eξ∼Q[`(ξ; θ)]

•The worst-case distribution takes the form of a Boltzmann distribution
•This leads to minimizing the new CRM objective:

R̃
KL

n (π) =
∑n
i=1 `(ξi; π) exp(`(ξi;π)/γ?)∑n

j=1 exp(`(ξj; π)/γ?)
.

(γ? is an hyperparameter). We call this algorithm KL-CRM.
•The optimal temperature γ∗ can be approximated:

γ∗ ≈
√
V̂arn(π)/2ε.

γ∗ should be updated concurrently to the π during training. We call this
algorithm aKL-CRM.

Experimental results

We follow the experimental procedure introduced in (Swaminathan et al,
2015). It is a supervised → unsupervised dataset conversion to build ban-
dit feedback from four multi-label classification datasets. aKL-CRM equals
or outperforms SOTA.

Scene Yeast RCV1-Topics TMC2009
CIPS 1.163 4.369 0.929 2.774
POEM 1.157 4.261 0.918 2.190

KL-CRM 1.146 4.316 0.922 2.134
aKL-CRM 1.128 4.271 0.779 2.034

Table 1: Hamming loss on D∗test for the different greedy policies, averaged over 20 independent
runs. Bold font indicates that one or several algorithms are statistically better than the rest,
according to a one-tailed paired difference t-test at significance level of 0.05.

Another experiment focuses on the impact of the size of the bandit dataset:
•For large datasets, all algorithms confound (as expected).
•For small datasets, the KL-based algorithms outperform POEM.

Future work

•Can we derive finite sample guarantees for DRO-based estimators?
•Can other tractable algorithms be derived from the DRO formulation?


