Distributionally Robust Counterfactual Risk Minimization

Louis Faury 1,2 , Ugo Tanielian 1,3 , Elena Smirnova 1 Flavian Vasile 1 , Elvis Dohmatob 1

¹ Criteo Al Labs ² LTCI, Telecom ParisTech ³ LPSM, Paris 6

Outline

• We are interested in off-line policy evaluation and improvement in a contextual bandit setting.

• We propose to use tools from **Distributionally Robust Optimization** (DRO) for this task, motivated by asymptotic guarantees.

• We introduce a **new algorithm** for off-line policy improvement, based on the DRO framework, that outperforms the state-of-the-art on classical datasets.

AAAI20

Contextual Bandits (CB)

The contextual bandits (CB) is an extension to the classical multi-arm bandit setting.

In CB, an agent is presented with a context x_t (exogenous) and plays an action a_t . The environment then generates a reward r_t .

The agent's goal is to maximize its expected reward.

AAAI20 3 / 25

Contextual Bandit (CB, cntd')

• Recommender system:

```
x_t=user embedding, a_t=recommandation, r=click
```

• Clinical trials:

 x_t =patient information, a_t =medication, r=remission

AAAI20 4 / 25

Contextual Bandit (CB, cntd')

Goal: Maximize the expected reward, under two settings:

- Online setting: at every round *t*, the agents interacts with the world to minimize its cumulative regret. The challenge is the exploration-exploitation trade-off.
- Offline setting: the agent only has access to past interactions and must find a way to improve its performance. The challenge is off-line policy evaluation and improvement.

We will consider the offline setting.

AAAI20

Some notations

- Let contexts $x \in \mathcal{X}$ and action $a \in \mathcal{A}$
- Let the cost c(x, a) := -r(x, a).
- The contexts are drawn under ν (unknown).

An agent is characterized by its **policy**: a function that maps contexts to a distribution on the actions.

The goal is to find the policy π with minimal risk:

$$R(\pi) := \mathbb{E}_{x \sim \nu, y \sim \pi(\cdot | x)} \left[c(x, y) \right]$$

which is the expected cost suffered when playing the policy π .

6 / 25

AAAI20

Offline Contextual Bandits (OCB)

In OCB, the agent cannot interact with the environment. The only available data are interaction logs from a logging policy π_0 :

$$\mathcal{H}_0 = \left(x_i, a_i, p_i = \pi_0(x_i|a_i), c_i = c(x_i, a_i)\right)_{1 \le i \le n}$$

A standard estimator for $R(\pi)$ involves inverse propensity scores:

$$R(\pi) = \mathbb{E}_{x \sim
u, a \sim \pi_0} \left[c(x, a) rac{\pi(a|x)}{\pi_0(a|x)}
ight]$$

usually estimated with capping:

$$\hat{R}_n(\pi) = \frac{1}{n} \sum_{\mathcal{H}_0} c_i \min\left(M, \frac{\pi(a_i|x_i)}{p_i}\right)$$

sometimes called the IPS estimator.

Distributionally Robust Counterfactual Risk Minimization

AAAI20 7 / 25

Counterfactual Risk Minimization (CRM)

Problem: the estimator $\hat{R}_n(\pi)$ can have very large variance for some π and may be **over-confident** (optimizer's curse).

Solution: [Swaminathan et al, 2015] ¹ suggest looking at an variance-sensitive upper-bound on the true risk:

$$R(\pi) \leq \hat{R}_n(\pi) + \lambda \sqrt{\widehat{\operatorname{Var}}_n(\pi)/n}$$
 w.h.p

leading to the CRM principle for policy improvement:

$$\operatorname{argmin}_{\pi} \hat{R}_n(\pi) + \lambda \sqrt{\widehat{\operatorname{Var}}_n(\pi)/n}$$

which gave rise to the **POEM** algorithm (state-of-the-art).

Can be augmented with variance-reduction techniques (Self-Normalized estimator, Doubly Robust).

¹Counterfactual Risk Minimization: Learning from Logged Bandit Feedback Distributionally Robust Counterfactual Risk Minimization AAAI20 8 / 25

Our contribution

We show that Distributionally Robust Optimization (DRO) tools can be applied to OCB in order to:

- provide a unified framework to build a collection of (asymptotic) variance-sensitive upper-bounds on the risk
- derive existing CRM algorithms
- derive new CRM algorithms outperforming state-of-the-art

 \Rightarrow DRO provides principled tools for the OCB problem. It is a general framework that generalizes existing CRM solutions.

Distributionally Robust Optimization (DRO)

Denote $\xi := (x, a)$ with distribution $P := \nu \times \pi_0$. We write the empirical risk as follows

$$\hat{R}_n(\pi) = \mathbb{E}_{\xi \sim \hat{P}_n}\left[\ell_{\pi}(\xi)\right] = \frac{1}{n} \sum_{i=1}^n \ell_{\pi}(\xi_i)$$

where $\ell_{\pi}(\xi_i) = c_i \min(M, \pi(a_i|x_i)/p_i)$ (capped propensity-costs).

In DRO, we treat \hat{P}_n with skepticism and introduce a robust risk:

$$ilde{\mathsf{R}}_{\mathsf{n}}^{\mathcal{U}}(\pi,\varepsilon) := \sup_{\mathsf{Q}\in\mathcal{U}_{\varepsilon}} \mathbb{E}_{\xi\sim\mathsf{Q}}\left[\ell_{\pi}(\xi)
ight]$$

where $\mathcal{U}_{\varepsilon}$ is an **ambiguity set**: a «ball» of radius ε around \hat{P}_n .

Distributionally Robust Counterfactual Risk Minimization

AAAI20 10 / 25

DRO (cnt'd)

We define $\mathcal{U}_{\varepsilon}$ using **coherent** φ -divergences

$$\mathcal{U}_{arepsilon} = \left\{ Q \; ext{ s.t } D_{arphi}(Q||\hat{P}_n) \leq arepsilon
ight\}$$

where for $Q \ll P$:

$$D_{arphi}(Q||P) = \int arphi\left(rac{dQ}{dP}
ight) dP$$

and 1) φ is a convex function, 2) $\varphi(t) \ge \varphi(1) = 0$, 3) $\varphi'(1) = 0$, 4) $\varphi''(1) > 0$ (coherent conditions).

We will consider robust risk defined through coherent φ -divergences:

$$\tilde{R}_n^{\varphi}(\pi,\varepsilon) = \sup_{D_{\varphi}(Q \mid\mid \hat{P}_n) \leq \epsilon} \mathbb{E}_{\xi \sim Q} \Big[\ell_{\pi}(\xi) \Big]$$

Distributionally Robust Counterfactual Risk Minimization AAAI20

DRO for CRM: guarantees

Guarantee 1 The robust risk $\tilde{R}_n^{\varphi}(\pi, \varepsilon)$ provides an asymptotic performance certificate for the true risk.

Lemma 1: Risk upper-bound For any $\delta > 0$: $\lim_{n \to \infty} \mathbb{P} \left[R(\pi) \le \tilde{R}_n^{\varphi}(\pi, \varepsilon_n) \right] \le 1 - \delta$ where $\varepsilon_n = \varphi''(1) \chi_{1,1-\delta}^2/(2n)$.

This result can be derived from Proposition 1 in [Duchi 2016]².

 $^2 {\rm Statistics}$ of Robust Optimization: A Generalized Empirical Likelihood Approach

Distributionally Robust Counterfactual Risk Minimization

AAAI20 12 / 25

DRO for CRM: guarantees (2)

Guarantee 2 The robust risk penalizes high-variance estimates:

Lemma 2: Asymptotic variance decomposition

$$\tilde{R}_n^{\varphi}(\pi,\varepsilon/n) = \hat{R}_n(\pi) + \sqrt{\frac{\varepsilon}{n}\widehat{\mathsf{Var}}_n(\pi)} + o(\frac{1}{\sqrt{n}})$$

This result can be obtained as a Corollary of Theorem 2 of [Duchi 2016].

 \Rightarrow Lemma 1 and Lemma 2 imply that the upper-bounds provide variance-sensitive performance certificate, making it a reliable tool for off-line policy evaluation.

AAAI20 13 / 25

DRO for CRM: guarantees (3)

Guarantee 3 With exponentially parametrized policy, minimizing the robust risk with χ^2 ambiguity sets is exactly the POEM algorithm.

Lemma 3: Exact variance decomposition For ε small enough:

$$\tilde{R}_n^{\chi^2}(\pi,\varepsilon) = \hat{R}_n(\pi) + \sqrt{\varepsilon \widehat{\operatorname{Var}}_n(\pi)}$$

 \Rightarrow Existing CRM algorithms are already instances of DRO estimators!

DRO for CRM: guarantees (4)

Sketch of proof By strong duality we have

$$\sup_{D_{\varphi}(Q||\hat{P}_{n})} \mathbb{E}_{Q}\left[\ell_{\pi}(\xi)\right] = \inf_{\gamma \geq 0} \gamma \varepsilon + \inf_{Q} \left\{ \mathbb{E}_{Q}\left[\ell_{\pi}(\xi)\right] - \gamma D_{\varphi}(Q||\hat{P}_{n}) \right\}$$
(1)

Using the Envelope Theorem of [Rockafellar18]³ one gets:

$$\sup_{D_{\varphi}(Q||\hat{P}_{n})} \mathbb{E}_{Q}\left[\ell_{\pi}(\xi)\right] = \inf_{\gamma \geq 0} \gamma \varepsilon + \inf_{c} \left\{ c + \gamma \mathbb{E}_{\hat{P}_{n}}\left[\varphi^{*}\left(\left(\ell_{\pi}(\xi) - c\right)/\gamma\right)\right] \right\}$$
(2)

For the χ^2 -divergence, $\varphi(z) = (z-1)^2$ and $\varphi^*(s) = s^2/4 + s$ for $s \ge -2$. Solving leads to the result.

³Risk and utility in the duality framework of convex analysis Distributionally Robust Counterfactual Risk Minimization AAAI20

0 15 / 25

DRO for CRM: guarantees (5)

Sum-up so far

- Guarantees 1 and 2: DRO is a general tool for building variance-sensitive upper-bounds on the risk
- Guarantee 3: POEM is actually DRO with χ^2 divergences.

In what follows

We introduce a **new** CRM algorithm inspired from DRO, and derived from Kullback-Leibler divergence ambiguity sets.

AAAI20

New KL-based CRM algorithm

We now consider KL-based ambiguity sets:

$$\tilde{R}_{n}^{\mathsf{KL}}(\pi,\varepsilon) = \min_{\mathsf{KL}(\mathcal{Q}||\hat{P}_{n})} \mathbb{E}_{\xi \sim \mathcal{Q}} \left[\ell_{\pi}(\xi) \right]$$

There is a tractable computation for the worst-case distribution.

Lemma 4: KL robustified risk It exists $\gamma > 0$ such that $\tilde{R}_{n}^{\text{KL}}(\pi, \varepsilon) = \sum_{i=1}^{n} \frac{\ell_{\pi}(\xi) e^{\ell_{\pi}(\xi_{i})/\gamma}}{\sum_{j=1}^{n} e^{\ell_{\pi}(\xi_{j})/\gamma}}$ (3)

The line of proof follows the one of Lemma 3, and uses the convex conjugate of $\varphi_{\text{KL}}(z) = z \log(z) - z + 1$.

AAAI20

New CRM algorithms

Policy optimization: Minimize the upper-bound given by the robust risk! This gives rise to the KL-CRM algorithm:

minimize_{$$\pi$$} $\left[\tilde{R}_{n}^{\mathsf{KL}}(\pi,\varepsilon) = \sum_{i=1}^{n} \frac{\ell_{\pi}(\xi_{i})e^{\ell_{\pi}(\xi_{i})/\gamma}}{\sum_{j=1}^{n} e^{\ell_{\pi}(\xi_{j})/\gamma}} \right]$ (KL-CRM)

AAAI20

18 / 25

where γ is treated as a hyper-parameter (cross-validation).

Temperature γ dictates the level of pessimism:

- $\gamma \rightarrow \infty$ reduces to the IPS estimator
- $\gamma \rightarrow$ 0 only consider the worst case propensity cost.

New CRM algorithms

A finer analysis reveals a good approximation γ .

Lemma 5: aKL-CRM

$$V_* \simeq \sqrt{\frac{\widehat{Var}_n(\pi)}{2\varepsilon}}$$

The proof relies on a second-order Taylor approximation of the log-m.g.f of the loss in the dual objective.

This gives rise to aKL-CRM which minimizes the KL-CRM objective and concurrently updates γ_* .

AAAI20 19 / 25

Experimental Results

We evaluate on standard datasets (supervised \rightarrow bandit) and compare KL-CRM and aKL-CRM with the basic IPS approach and the POEM algorithm.

Hyper-parameters are determined through cross-validation. Experiments are average over 20 different random initialization.

The performance of a policy is reported by its **expected** instant regret or by the **instant regret** of its **greedy** policy.

AAAI20

20 / 25

Distributionally Robust Counterfactual Risk Minimization

Experimental Results (ctn'd)

Expected instant regret:

	Scene	Yeast	RCV1-Topics	TMC2009
π_0	1.529	5.542	1.462	3.435
CIPS	1.163	4.658	0.930	2.776
POEM	1.157	4.535	0.918	2.191
KL-CRM	1.146	4.604	0.922	2.136
aKL-CRM	1.128	4.553	0.783	2.126
CRF	0.646	2.817	0.341	1.187

Table: Expected Hamming loss on \mathcal{D}_{test}^* for the different algorithms, averaged over 20 independent runs. Bold font indicate that one or several algorithms are statistically better than the rest, according to a one-tailed paired difference t-test at significance level of 0.05.

Rq: CRF is a skyline that has access to full supervised feedback.

AAAI20

21 / 25

Distributionally Robust Counterfactual Risk Minimization

Experimental Results (ctn'd)

Greedy instant regret:

	Scene	Yeast	RCV1-Topics	TMC2009
CIPS	1.163	4.369	0.929	2.774
POEM	1.157	4.261	0.918	2.190
KL-CRM	1.146	4.316	0.922	2.134
aKL-CRM	1.128	4.271	0.779	2.034

Table: Hamming loss on \mathcal{D}_{test}^* for the different greedy policies, averaged over 20 independent runs. Bold font indicates that one or several algorithms are statistically better than the rest, according to a one-tailed paired difference t-test at significance level of 0.05.

AAAI20

Experimental Results (ctn'd)

Influence of the size of the logged history:

Figure: Impact of the replay count Δ on the expected Hamming loss. Results are average over 10 independent runs, that is 10 independent train/test split and bandit dataset creation. KL-CRM and aKL-CRM outperform POEM in the small data regime.

Conclusion and future work

DRO is a principled tool for OCB and lead to **competitive** CRM algorithms.

Future work:

- further experimental evalutions (SNIPS, DR)
- solving the primal problem can be easy! we can use performance certificate given by many φ divergences.
- can we derive finite samples guarantees?

AAAI20 24 / 25

Thank you!

Distributionally Robust Counterfactual Risk Minimization

AAAI20