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Outline

We are interested in off-line policy evaluation and
improvement in a contextual bandit setting.

We propose to use tools from Distributionally Robust
Optimization (DRO) for this task, motivated by asymptotic
guarantees.

We introduce a new algorithm for off-line policy
improvement, based on the DRO framework, that outperforms
the state-of-the-art on classical datasets.
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Contextual Bandits (CB)

The contextual bandits (CB) is an extension to the classical
multi-arm bandit setting.

Agent World
at

rt(at , xt)

xt

In CB, an agent is presented with a context xt (exogenous) and
plays an action at . The environment then generates a reward rt .

The agent’s goal is to maximize its expected reward.
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Contextual Bandit (CB, cntd’)

Recommender system:
xt=user embedding, at=recommandation, r=click

Clinical trials:
xt=patient information, at=medication, r=remission
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Contextual Bandit (CB, cntd’)

Goal: Maximize the expected reward, under two settings:

Online setting: at every round t, the agents interacts with
the world to minimize its cumulative regret. The challenge is
the exploration-exploitation trade-off.

Offline setting: the agent only has access to past interactions
and must find a way to improve its performance. The
challenge is off-line policy evaluation and improvement.

We will consider the offline setting.
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Some notations

Let contexts x ∈ X and action a ∈ A
Let the cost c(x , a) := −r(x , a).
The contexts are drawn under ν (unknown).

An agent is characterized by its policy: a function that maps
contexts to a distribution on the actions.

The goal is to find the policy π with minimal risk:

R(π) := Ex∼ν,y∼π(·|x) [c(x , y)]

which is the expected cost suffered when playing the policy π.

Distributionally Robust Counterfactual Risk Minimization AAAI20 6 / 25



Offline Contextual Bandits (OCB)

In OCB, the agent cannot interact with the environment. The only
available data are interaction logs from a logging policy π0:

H0 =
(
xi , ai , pi = π0(xi |ai ), ci = c(xi , ai )

)
1≤i≤n

A standard estimator for R(π) involves inverse propensity scores:

R(π) = Ex∼ν,a∼π0

[
c(x , a)

π(a|x)

π0(a|x)

]
usually estimated with capping:

R̂n(π) =
1
n

∑
H0

ci min

(
M,

π(ai |xi )
pi

)
sometimes called the IPS estimator.
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Counterfactual Risk Minimization (CRM)

Problem: the estimator R̂n(π) can have very large variance for
some π and may be over-confident (optimizer’s curse).

Solution: [Swaminathan et al, 2015] 1 suggest looking at an
variance-sensitive upper-bound on the true risk:

R(π) ≤ R̂n(π) + λ

√
V̂arn(π)/n w.h.p

leading to the CRM principle for policy improvement:

argminπR̂n(π) + λ

√
V̂arn(π)/n

which gave rise to the POEM algorithm (state-of-the-art).

Can be augmented with variance-reduction techniques
(Self-Normalized estimator, Doubly Robust).

1Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
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Our contribution

We show that Distributionally Robust Optimization (DRO) tools
can be applied to OCB in order to:

provide a unified framework to build a collection of
(asymptotic) variance-sensitive upper-bounds on the risk

derive existing CRM algorithms

derive new CRM algorithms outperforming state-of-the-art

⇒ DRO provides principled tools for the OCB problem. It is a
general framework that generalizes existing CRM solutions.
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Distributionally Robust Optimization (DRO)

Denote ξ := (x , a) with distribution P := ν × π0. We write the
empirical risk as follows

R̂n(π) = Eξ∼P̂n
[`π(ξ)] =

1
n

n∑
i=1

`π(ξi )

where `π(ξi ) = ci min(M, π(ai |xi )/pi ) (capped propensity-costs).

In DRO, we treat P̂n with skepticism and introduce a robust risk:

R̃Un (π, ε) := sup
Q∈Uε

Eξ∼Q [`π(ξ)]

where Uε is an ambiguity set: a «ball» of radius ε around P̂n.
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DRO (cnt’d)

We define Uε using coherent ϕ-divergences

Uε =
{
Q s.t Dϕ(Q||P̂n) ≤ ε

}
where for Q � P :

Dϕ(Q||P) =

∫
ϕ

(
dQ

dP

)
dP

and 1) ϕ is a convex function, 2) ϕ(t) ≥ ϕ(1) = 0, 3) ϕ′(1) = 0,
4) ϕ′′(1) > 0 (coherent conditions).
We will consider robust risk defined through coherent
ϕ-divergences:

R̃ϕn (π, ε) = sup
Dϕ(Q||P̂n)≤ε

Eξ∼Q
[
`π(ξ)

]
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DRO for CRM: guarantees

Guarantee 1 The robust risk R̃ϕn (π, ε) provides an asymptotic
performance certificate for the true risk.

Lemma 1: Risk upper-bound
For any δ > 0:

lim
n→∞

P
[
R(π) ≤ R̃ϕn (π, εn)

]
≤ 1− δ

where εn = ϕ′′(1)χ2
1,1−δ/(2n).

This result can be derived from Proposition 1 in [Duchi 2016]2.

2Statistics of Robust Optimization: A Generalized Empirical Likelihood
Approach
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DRO for CRM: guarantees (2)

Guarantee 2 The robust risk penalizes high-variance estimates:

Lemma 2: Asymptotic variance decomposition

R̃ϕn (π, ε/n) = R̂n(π) +

√
ε

n
V̂arn(π) + o(

1√
n

)

This result can be obtained as a Corollary of Theorem 2 of [Duchi
2016].

⇒ Lemma 1 and Lemma 2 imply that the upper-bounds provide
variance-sensitive performance certificate, making it a reliable tool
for off-line policy evaluation.
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DRO for CRM: guarantees (3)

Guarantee 3 With exponentially parametrized policy, minimizing
the robust risk with χ2 ambiguity sets is exactly the POEM
algorithm.

Lemma 3: Exact variance decomposition
For ε small enough:

R̃χ
2

n (π, ε) = R̂n(π) +

√
εV̂arn(π)

⇒ Existing CRM algorithms are already instances of DRO
estimators!
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DRO for CRM: guarantees (4)

Sketch of proof By strong duality we have

sup
Dϕ(Q||P̂n)

EQ [`π(ξ)] = inf
γ≥0

γε+ inf
Q

{
EQ [`π(ξ)]− γDϕ(Q||P̂n)

}
(1)

Using the Envelope Theorem of [Rockafellar18]3 one gets:

sup
Dϕ(Q||P̂n)

EQ [`π(ξ)] = inf
γ≥0

γε+ inf
c

{
c + γEP̂n

[ϕ∗ ((`π(ξ)− c)/γ)]
}

(2)

For the χ2-divergence, ϕ(z) = (z − 1)2 and ϕ∗(s) = s2/4 + s for
s ≥ −2. Solving leads to the result.

3Risk and utility in the duality framework of convex analysis
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DRO for CRM: guarantees (5)

Sum-up so far
Guarantees 1 and 2: DRO is a general tool for building
variance-sensitive upper-bounds on the risk
Guarantee 3: POEM is actually DRO with χ2 divergences.

In what follows
We introduce a new CRM algorithm inspired from DRO, and
derived from Kullback-Leibler divergence ambiguity sets.
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New KL-based CRM algorithm

We now consider KL-based ambiguity sets:

R̃KL
n (π, ε) = min

KL(Q||P̂n)
Eξ∼Q [`π(ξ)]

There is a tractable computation for the worst-case distribution.

Lemma 4: KL robustified risk
It exists γ > 0 such that

R̃KL
n (π, ε) =

n∑
i=1

`π(ξ)e`π(ξi )/γ∑n
j=1 e

`π(ξj )/γ
(3)

The line of proof follows the one of Lemma 3, and uses the convex
conjugate of ϕKL(z) = z log(z)− z + 1.
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New CRM algorithms

Policy optimization: Minimize the upper-bound given by the
robust risk! This gives rise to the KL-CRM algorithm:

minimizeπ

[
R̃KL
n (π, ε) =

n∑
i=1

`π(ξi )e
`π(ξi )/γ∑n

j=1 e
`π(ξj )/γ

]
(KL-CRM)

where γ is treated as a hyper-parameter (cross-validation).

Temperature γ dictates the level of pessimism:
γ →∞ reduces to the IPS estimator
γ → 0 only consider the worst case propensity cost.
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New CRM algorithms

A finer analysis reveals a good approximation γ.

Lemma 5: aKL-CRM

γ∗ '

√
V̂arn(π)

2ε

The proof relies on a second-order Taylor approximation of the
log-m.g.f of the loss in the dual objective.

This gives rise to aKL-CRM which minimizes the KL-CRM
objective and concurrently updates γ∗.
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Experimental Results

We evaluate on standard datasets (supervised→bandit) and
compare KL-CRM and aKL-CRM with the basic IPS approach and
the POEM algorithm.

Hyper-parameters are determined through cross-validation.
Experiments are average over 20 different random initialization.

The performance of a policy is reported by its expected instant
regret or by the instant regret of its greedy policy.
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Experimental Results (ctn’d)

Expected instant regret:

Scene Yeast RCV1-Topics TMC2009
π0 1.529 5.542 1.462 3.435

CIPS 1.163 4.658 0.930 2.776
POEM 1.157 4.535 0.918 2.191
KL-CRM 1.146 4.604 0.922 2.136
aKL-CRM 1.128 4.553 0.783 2.126

CRF 0.646 2.817 0.341 1.187

Table: Expected Hamming loss on D∗
test for the different algorithms,

averaged over 20 independent runs. Bold font indicate that one or several
algorithms are statistically better than the rest, according to a one-tailed
paired difference t-test at significance level of 0.05.

Rq: CRF is a skyline that has access to full supervised feedback.
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Experimental Results (ctn’d)

Greedy instant regret:

Scene Yeast RCV1-Topics TMC2009
CIPS 1.163 4.369 0.929 2.774
POEM 1.157 4.261 0.918 2.190
KL-CRM 1.146 4.316 0.922 2.134
aKL-CRM 1.128 4.271 0.779 2.034

Table: Hamming loss on D∗
test for the different greedy policies, averaged

over 20 independent runs. Bold font indicates that one or several
algorithms are statistically better than the rest, according to a one-tailed
paired difference t-test at significance level of 0.05.
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Experimental Results (ctn’d)

Influence of the size of the logged history:
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(a) Yeast dataset
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(b) Scene dataset

Figure: Impact of the replay count ∆ on the expected Hamming loss.
Results are average over 10 independent runs, that is 10 independent
train/test split and bandit dataset creation. KL-CRM and aKL-CRM
outperform POEM in the small data regime.
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Conclusion and future work

DRO is a principled tool for OCB and lead to competitive CRM
algorithms.

Future work:
further experimental evalutions (SNIPS, DR)

solving the primal problem can be easy! we can use
performance certificate given by many ϕ divergences.

can we derive finite samples guarantees?
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Thank you!
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