GECCO 2019, Workshop on Real-Parameter Black-Box Optimization Benchmarking

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Louis Faury^{*,†}, Clément Calauzènes^{*}, Olivier Ferocq[†]

* Criteo Al Labs [†] LTCI, Telecom ParisTech

We investigate the benefits of *expressivity* in search distributions. To do so, we:

- augment Gaussian search distributions with generative neural networks
- propose a plug-in to the CMA-ES to train such distributions
- benchmark its performance on the BBOB noiseless testbed

• discuss results

Goal: Minimize $f : \mathbb{R}^d \to \mathbb{R}$ through *zeroth-order* oracle only

ES approach: Maintain and update a *search distribution* π over \mathbb{R}^d ;

Sampling (exploration)

Updating (*exploitation*)

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Typically, $\pi_{\omega} = \mathcal{N}(\omega)$ and $\omega = (\mu, \Sigma)$.

CMA-ES Update π_{ω} via *heuristic* mechanisms.

NES Update π_{ω} via *natural gradient descent* of the objective:

$$J(\omega) = \mathbb{E}_{x \sim \pi_{\omega}} \left[f(x) \right]$$

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

We argue that:

• Standard distributions are too *rigid*

• Can be a *harmful constraint* for the stochastic search

• ES algorithms can benefit from *flexible* distributions (asymmetric, multimodal, ..)

The example of the Rosenbrock function:

Gaussian search

Our method

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

BBOB2019

6 / 25

Flexible search distributions for ES must satisfy the following:

• Flexible! (asymmetric, potentially multimodal, ..)

• Easily trainable

• Leave the exploration/exploitation trade-off to the ES

Neural Normalizing Flows (NNF):

• family of *generative neural networks* for which the likelihood $\pi_{\theta}(x)$ is easily computable and differentiable.

• \Rightarrow trainable via gradient descent (maximum likelihood principle).

Normalizing flows (ctn'd)

If h_{η} is bijective, *change of variable formula*:

Tools

$$\pi_{\omega,\eta}(\mathsf{x}) = \phi_{\omega}(h_{\eta}^{-1}(\mathsf{x})) \left| rac{\partial h_{\eta}^{-1}(\mathsf{x})}{\partial \mathsf{x}}
ight|, \quad \phi_{\omega} ext{ p.d.f of } \mathcal{N}(\omega)$$

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

The NICE [Dinh et al, 2017] model is a NNF that is volume preserving:

$$orall x \in \mathcal{X}, \quad \left|rac{\partial h_\eta^{-1}(x)}{\partial x}
ight| = 1$$

 h_η is hierarchically built (with neural networks) to ensure invertibility.

Volume preserving: the exploration/exploitation trade-off is left to the latent distribution.

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

The NICE model checks our needs:

- easily trainable via gradient descent
- flexible (see [Dinh et al, 2017])
- volume preserving (exploitation/exploration trade-off)

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

The NICE model checks our needs:

- easily trainable via gradient descent
- flexible (see [Dinh et al, 2017])
- volume preserving (exploitation/exploration trade-off)

how de we train it for ES?

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right]$$

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

BBOB2019

12 / 25

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\omega)} \left[f(h_{\eta}(\mathbf{z})) \right]$$

GNN-ES

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right] = \mathbb{E}_{z \sim \mathcal{N}(\omega)} \left[f(h_{\eta}(z)) \right]$$

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\omega)} \left[f(h_{\eta}(\mathbf{z})) \right]$$

- $\mathcal{N}(\omega)$ minimizes the function $f \circ h_{\eta}$ (done by ES algorithm)
- h_η provides a representation $f \circ h_\eta$ more adapted to $\mathcal{N}(\omega)$

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\omega)} \left[f(h_{\eta}(\mathbf{z})) \right]$$

- $\mathcal{N}(\omega)$ minimizes the function $f \circ h_{\eta}$ (done by ES algorithm)
- h_{η} provides a representation $f \circ h_{\eta}$ more adapted to $\mathcal{N}(\omega)$ (plug-in)

$$J(\omega,\eta) = \mathbb{E}_{\mathbf{x} \sim \pi_{\omega,\eta}} \left[f(\mathbf{x}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\omega)} \left[f(h_{\eta}(\mathbf{z})) \right]$$

• $\mathcal{N}(\omega)$ minimizes the function $f \circ h_{\eta}$ (done by ES algorithm) • h_n provides a representation $f \circ h_n$ more adapted to $\mathcal{N}(\omega)$ (plug-in)

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{x \sim \pi_{\omega_t, \eta}} \left[f(x) \right]$$

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{x \sim \pi_{\omega_t, \eta}} [f(x)]$$

Additional tools:

• Off-policy (importance weights) to incorporate past samples (data exposure)

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{\mathsf{x} \sim \pi_{\mathbf{0}}} \left[f(\mathsf{x}) \frac{\pi_{\omega_t, \eta}(\mathsf{x})}{\pi_{\mathbf{0}}(\mathsf{x})} \right]$$

Additional tools:

• Off-policy (importance weights) to incorporate past samples (data exposure)

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{\mathsf{x} \sim \pi_{\mathbf{0}}} \left[f(\mathsf{x}) \frac{\pi_{\omega_t, \eta}(\mathsf{x})}{\pi_{\mathbf{0}}(\mathsf{x})} \right]$$

Additional tools:

- Off-policy (importance weights) to incorporate past samples (data exposure)
- Kullback-Leibler penalty to limit the *non-stationarity* of $f \circ h_{\eta}$

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{x \sim \pi_{\mathbf{0}}} \left[f(x) \frac{\pi_{\omega_{t}, \eta}(x)}{\pi_{\mathbf{0}}(x)} \right] + \beta_{t} \mathsf{KL} \left(\pi_{\omega_{t}, \eta} || \pi_{\omega_{t}, \eta_{t}} \right)$$

Additional tools:

- Off-policy (importance weights) to incorporate past samples (data exposure)
- Kullback-Leibler penalty to limit the *non-stationarity* of $f \circ h_{\eta}$

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \mathbb{E}_{x \sim \pi_{\mathbf{0}}} \left[f(x) \frac{\pi_{\omega_{t}, \eta}(x)}{\pi_{\mathbf{0}}(x)} \right] + \beta_{t} \mathsf{KL}\left(\pi_{\omega_{t}, \eta} || \pi_{\omega_{t}, \eta_{t}} \right)$$

Additional tools:

- Off-policy (importance weights) to incorporate past samples (data exposure)
- Kullback-Leibler penalty to limit the *non-stationarity* of $f \circ h_{\eta}$
- Solved by a stochastic gradient descent solver

$$\eta_{t+1} \in \operatorname{argmin}_{\eta} \underbrace{\widetilde{\mathbb{E}}_{x \sim \pi_{0}} \left[f(x) \frac{\pi_{\omega_{t}, \eta}(x)}{\pi_{0}(x)} \right]}_{+ \beta_{t} \mathsf{KL} \left(\pi_{\omega_{t}, \eta} || \pi_{\omega_{t}, \eta_{t}} \right)}$$

Additional tools:

- *Off-policy* (importance weights) to incorporate past samples (data exposure)
- Kullback-Leibler penalty to limit the *non-stationarity* of $f \circ h_{\eta}$
- Solved by a stochastic gradient descent solver

1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$
- 3. Append (X, F, L) to buffer history

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$
- 3. Append (X, F, L) to buffer history
- 4. Apply ES algorithm to $\mathcal{N}(\omega_t)$ with (Z, F).

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$
- 3. Append (X, F, L) to buffer history
- 4. Apply ES algorithm to $\mathcal{N}(\omega_t)$ with (Z, F). $\left(\min_{\omega} J(\omega, \eta_t)\right)$

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$
- 3. Append (X, F, L) to buffer history
- 4. Apply ES algorithm to $\mathcal{N}(\omega_t)$ with (Z, F). $\left(\min_{\omega} J(\omega, \eta_t)\right)$
- 5. Minimize $J_{NNF}(\omega_{t+1}, \eta)$

- 1. Sample $Z \triangleq z_1 : \lambda \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\omega_t)$
- 2. Evaluate $X = \mathbf{x}_{1:\lambda}$ (push-forward), $F = f_{1:\lambda}$, $L = \log \pi_{\omega_t,\eta_t}(\mathbf{x}_{1:\lambda})$
- 3. Append (X, F, L) to buffer history
- 4. Apply ES algorithm to $\mathcal{N}(\omega_t)$ with (Z, F). $\left(\min_{\omega} J(\omega, \eta_t)\right)$

5. Minimize
$$J_{NNF}(\omega_{t+1},\eta) \left(\min_{\eta} J(\omega_{t+1},\eta)\right)$$

GNN-CMA-ES

- latent space optimization is performed by the CMA-ES [Hansen & Ostermeier, 2001].
- NNF hyper-parmeters:
 - 3 times $(d \rightarrow 16 \rightarrow d)$ multi-layer perceptrons
 - Hyperbolic tangent activations
 - History size = 3λ
 - KL constraint: KL $(\pi_{\omega_{t+1},\eta_t} || \pi_{\omega_{t+1},\eta_{t+1}}) \leq 0.01$

GNN-CMA-ES (ctn'd)

Rosenbrock (data space)

Rosenbrock (latent space)

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

BBOB2019

17 / 25

GNN-CMA-ES (ctn'd)

Rastrigin (data space)

Rastrigin (latent space)

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

BBOB2019

17 / 25

Results on the BBOB 2018 noiseless function suites

Individual functions:

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Individual functions:

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Poor result in ill-conditioned ellipsoidal functions:

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Scaling with dimensions:

Benchmarking GNN-CMA-ES on the BBOB Noiseless Testbed

Scaling with dimensions:

Conclusions:

- Flexibility accelerates ES algorithms on "some" functions..
- but hinders it in landscapes where the Gaussian is well adapted.
- Positive effects seem to disappear as the dimension increases.

Conclusions:

- Flexibility accelerates ES algorithms on "some" functions..
- but hinders it in landscapes where the Gaussian is well adapted.
- Positive effects seem to disappear as the dimension increases.

Future work:

- Reduce computational load.
- Detect when triggering the NNF training is useful.
- Use larger historic to improve in high dimensions.
- Regularization in the latent space

Thank you!