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Motivation
Toward non-linear reward model
• Parametric bandit results mostly concern the linear setting,
• non-linearity often arises in real-world application,
• impact of non-linearity on the exploration-exploitation tradeoff is

poorly understood.

The logistic bandit setting
• Non-linear reward signal,
• compact and minimal setting,
• widely used for practical applications.

We characterize the impact of non-linearity for
Logistic Bandit:

first problem-dependent lower-bound,

minimax-optimal algorithm.

The Logistic Bandit problem
The reward model

• X ⊂ Rd is the arm set,
• r(x) ∈ {0, 1} is the reward

associated with arm x ∈ X ,
• θ? ∈ Rd unknown parameter.

[Binary reward]

r(x)∼Bernoulli
(
µ(xTθ?)

)
[Non-linear link function]

µ(z) =
(
1 + exp(−z)

)−1
The learning problem
At each step t ≤ T :
• choose a arm xt ∈ X ,
• receive r(xt),

Objective: minimize Regret

Rθ?(T ) =
T∑
t=1

[
max
x∈X

µ(xTθ?)− µ(xTt θ?)

]
.

Quantifying non-linearity
We consider two important problem-dependent constants:

κκκ? := 1/µ̇(max
x∈X

xTθ?)

κκκX := 1/min
x∈X

µ̇(xTθ?)

• κκκ?: "distance to linearity" around the optimal action,
• κκκX : worst-case "distance to linearity" over the decision set.
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Non-linearity: blessing or curse ?
From LB to LogB
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Impact on the learning
Different richness of information associated with sampling an arm:
LB same everywhere,
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LogB high in the center, low in the
tails! CtCtCt

θ̂t̂θt̂θt
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! Despite non-linearity → available conf. set. Ct for LogB,
[Faury et al, Improved Optimistic Algorithms for Logistic Bandits, ICML’20]

% Some regions are harder to learn that other → the conf. set. Ct
is not an ellipsoid!

Impact on the predicted performance
! LogB deviation in parameters → little to no deviation in perfor-

mance in the tails

‖θ − θ?‖ = δ ⇒ µ(xTθ) ≈ µ(xTθ?).

Open question: does easy prediction cancel out
hard learning?

Related Work and Contributions
Related work

Rθ?(T ) . κκκXd
√
T[Filippi et al., NIPS’10]

Rθ?(T ) . d
√
T + κκκX[Faury et al., ICML’20]

In the worst case, Rθ?(T )
must increase with κκκX

[Dong et al., COLT’19]

Contributions

Theorem 1. (Regret Upper Bound) The regret of OFU-
Log satisfies with high-probability:

Rθ?(T ) . d

√
T

κκκ?
+ (κκκX ).

Illustration: if X = {‖x‖ ≤ 1} then κκκ? = κκκX ≈ exp(‖θ?‖) :

Rθ?(T ) . d
√
T/κκκX ,

. d exp(−‖θ?‖/2)
√
T

the more non-linear the model, the smaller the regret!
exponential improvement over existing bounds.

Theorem 2. (Local Lower Bound) Let X = Sd(0, 1), for
any θ? and T large enough, it exists ε > 0 such that:

min
π

max
‖θ−θ?‖≤ε

E
[
Rπθ (T )

]
= Ω

(
d

√
T

κκκ?

)
.

where ε is small enough that ∀θ ∈ {‖θ − θ?‖ ≤ ε} we have
κ?(θ) = Θ(κκκ?).

the upper-bound is optimal for large T .
the lower-bound holds for all instances θ?.

Ideas Behind the Lower Bound
Objective and approach
• We shoot for a problem-dependent lower-bound,
• usual approaches consider worst-case over all possible instances,
• inspired by [Simchowitz et al., ICML’20] → local lower-bound,
• worst-case over nearby alternatives around a given problem in-

stance.

High-level idea
• We consider a given instance parametrized by θ?,
• let π denote a policy that outputs a sequence of arms, and Rπθ?(T )

the induced expected regret.

Small regret ↔ low exploration

Rπθ?(T ) ∝ 1/κκκ?

T∑
t=1

‖xt − x?(θ?)‖2, x?(θ?) = arg max
x∈X

µ(xTθ?)

• Rπθ?(T ) small ↔ xt ' x?(θ?),
• directions orthogonal to x?(θ?) are poorly explored!
• Larger κκκ? → smaller impact when deviating from x∗(θ?)!

Low exploration ↔ large set of plausible
alternative

• We quantify the similarity between instances θ, θ? under policy π
by the discrepancy

DKL
(
Pπθ ,Pπθ?

)
large DKL

(
Pπθ ,Pπθ?

)
→ easy to distinguish θ and θ? under π,

small DKL
(
Pπθ ,Pπθ?

)
→ hard to distinguish θ and θ? under π.

DKL
(
Pπθ ,Pπθ?

)
∝
√
T

κκκ?
‖θ − θ?‖2

• large κκκ? degrades the richness of
acquired information,

→ DKL
(
Pπθ ,Pπθ?

)
decreases with κκκ?.

θ?θ?θ?

θθθ

{DKL
(
Pπθ ,Pπθ∗

)
≤ 1}{DKL

(
Pπθ ,Pπθ∗

)
≤ 1}{DKL

(
Pπθ ,Pπθ∗

)
≤ 1}

XXX

Tension and trade-off

• Policy π cannot perform well on two distinct instances,
• but may not yield similar information.
Trade-off
• Let π perform well for θ?,
• consider an alternative instance θ such that ‖θ − θ?‖2 ≈

√
κκκ?

T ,
• the regret of π for the instance θ must be large:

Rπθ (T ) ≈ 1/κκκ?

T∑
t=1

‖xt − x∗(θ)‖2 ≈ 1/κκκ?

T∑
t=1

‖x∗(θ?)− x∗(θ)‖2

≈ T‖θ? − θ‖2/κκκ? ≈
√
T/κκκ?.

Ideas Behind the Upper Bound
Permanent and transitory regimes

Regret decomposition

Rθ?(T ) = Rperm(T ) +Rtrans(T )
aaaaaaa︸ ︷︷ ︸
Õ(
√
T )Õ(
√
T )Õ(
√
T )

aaaaaaa︸ ︷︷ ︸
Õ(1)Õ(1)Õ(1)

Permanent regime: intuition

• Sublinear regret ⇒ play mostly around the best arm x?.
Almost a linear bandit with slope 1/κκκ?.

• A finer analysis is coherent with this conceptual argument:

Rperm(T ) ≤ d

√√√√ T∑
t=1

µ̇(xTt θ?) ≈ d
√
T/κκκ? .

• Formal proof: thanks to self-concordance property.

Transitory regime and detrimental arms

• Detrimental arm X−X−X−: low-information and large gap:
far left tail of the reward signal:

XXX

θ?θ?θ?

X−X−X−

variance ∝ 1/κκκX

gap ≈ 1/2

XXX

θ?θ?θ?

X−X−X−

plenty of
good arms

• Transitory regime: how long before discarding detrimental arms:

Rtrans
θ?(T ) ≤ min

(
κκκX ,

T∑
t=1

1(xt ∈ X−X−X−)

)
.

• Fast if the proportion of detrimental arms is small:

Proposition 1. (Transitory regret) With h.p :

Rtrans(T ) .T d
2 + dK if |X−| ≤ K ,

Rtrans(T ) .T d
3 if X = Bd(0, 1) .

independent of κκκX for reasonable configurations!

Algorithm and experiments

for t = {0, . . . , T} do
(Learning) Solve θ̂t = arg minθ Lt(θ).
(Planning) Solve (xt, θt) ∈ arg maxX ,Ct(δ) µ

(
xTθ

)
.

Play xt and observe reward rt+1.
end for

where Lt(θ) and Ct(δ) are the log-likelihood function and confidence
set associated with the learning problem.

Parameter-based optimism

• Enforce optimism through parameter-search (OFUL-like), and not
bonus-based approach.

• This yields an adaptive algorithm: no tuning needed to adapt to
the structure of the decision set.

Tractable algorithm
• We also introduce a convex relaxation of the confidence set Ct(δ)

of [Faury et al., ICML’20] .
• No non-convex optimization routine ( 6= previous work).

Practical improvements
• Toy experiment: dramatic improvement over GLM-UCB [Fil-

ippi et al., NIPS’10] and Log-UCB1 [Faury et al., ICML’20] .
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Conclusion
• Our conclusion contrasts with previous work:

Logistic Bandit: non-linearity makes the problem easier!

• Regret-upper bound with exponential improvement.
• First problem-dependent lower-bound for Logistic Bandit.
• Fully tractable, adaptive algorithm thanks to convex relaxation.

References
S. Filippi, O. Cappé, A. Garivier and C. Szepesvári. Parametric Bandits: The

Generalized Linear Case. Proceedings of NIPS, 2010.
F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of

Statistics, 2010.
S. Dong, T. Ma and B. Van Roy. On the Performance of Thompson Sampling

on Logistic Bandits. Proceedings of COLT, 2019.
L. Faury, M. Abeille, C. Calauzène and O. Fercoq. Improved Optimistic Algo-

rithms for Logistic Bandits. Proceedings of ICML, 2020.
M. Simchovitz and D. Foster. Naive Exploration is Optimal for Online LQR.

Proceedings of ICML, 2020.


