INSTANCE-WISE MINIMAX-OPTIMAL ALGORITHMS FOR LOGISTIC BANDITS

MARC ABEILLE¹, LOUIS FAURY^{1,2}, CLÉMENT CALAUZÈNES¹

¹Criteo AI Lab, ²LTCI Télécom Paris

IOTIVATION	Related Work and Contributions		IDEAS BEHIND THE UPPER BOUND
oward non-linear reward model	Related work		Permanent and transitory regimes
non-linearity often arises in real-world application, impact of non-linearity on the exploration-exploitation tradeoff is poorly understood.	[Filippi et al., NIPS'10]	$R_{\theta_{\star}}(T) \lesssim \kappa_{\varkappa} d\sqrt{T}$	Regret decomposition
he logistic bandit setting Non-linear reward signal,	[Faury et al., ICML'20]	$R_{\theta_{\star}}(T) \lesssim d\sqrt{T} + \kappa_{\chi}$	$R_{\theta_{\star}}(T) = R^{\text{perm}}(T) + R^{\text{trans}}(T)$ $\overbrace{\tilde{\mathcal{O}}(\sqrt{T})}^{\tilde{\mathcal{O}}(1)}$
widely used for practical applications. We characterize the impact of non-linearity for	[Dong et al., COLT'19]	In the worst case, $R_{\theta_{\star}}(T)$ must increase with κ_{χ}	• Sublinear regret \Rightarrow play mostly around the best arm x_{\star} .
Logistic Bandit:	Contributions		 A finer analysis is coherent with this conceptual argument:
 first problem-dependent lower-bound, minimax-optimal algorithm. 	Theorem 1. (Regret Upper Bound) The regret of OFU- Log satisfies with high-probability:		$R^{\text{perm}}(T) \le d_{\sqrt{\sum_{t=1}^{T} \dot{\mu}(x_t^{T}\theta_{\star})}} \approx d\sqrt{T/\kappa_{\star}} .$
THE LOGISTIC BANDIT PROBLEM	\sqrt{T}		

The reward model

• $\mathcal{X} \subset \mathbb{R}^d$ is the arm set, • $r(x) \in \{0, 1\}$ is the reward associated with arm $x \in \mathcal{X}$, • $\theta_{\star} \in \mathbb{R}^d$ unknown parameter.

The learning problem

At each step $t \leq T$:

• choose a arm $x_t \in \mathcal{X}$,

• receive $r(x_t)$,

Objective: minimize Regret

 $R_{\theta_{\star}}(T) = \sum_{t=1}^{T} \left[\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}}\theta_{\star}) - \mu(x_t^{\mathsf{T}}\theta_{\star}) \right] .$

[Binary reward]

 $r(x) \sim \texttt{Bernoulli}(\mu(x^{\mathsf{T}}\theta_{\star}))$

[Non-linear link function]

 $\mu(z) = (1 + \exp(-z))^{-1}$

Quantifying non-linearity We consider two important *problem-dependent* constants:

$$\kappa_{\star} := 1/\dot{\mu}(\max_{x \in \mathcal{X}} x^{\mathsf{T}} \theta_{\star})$$
$$\kappa_{\star} := 1/\min_{x \in \mathcal{X}} \dot{\mu}(x^{\mathsf{T}} \theta_{\star})$$

• κ_{\star} : "distance to linearity" around the optimal action, • κ_{χ} : worst-case "distance to linearity" over the decision set. $R_{\theta_{\star}}(T) \lesssim d\sqrt{\frac{T}{\kappa_{\star}}} + (\kappa_{\star}).$

Illustration: if
$$\mathcal{X} = \{ \|x\| \le 1 \}$$
 then $\kappa_{\star} = \kappa_{\mathcal{X}} \approx \exp(\|\theta_{\star}\|)$:

 $R_{\theta_{\star}}(T) \lesssim d\sqrt{T/\kappa_{\chi}}$, $\leq d \exp(-\|\theta_{\star}\|/2)\sqrt{T}$

 \longrightarrow the more non-linear the model, the smaller the regret! \rightsquigarrow exponential improvement over existing bounds.

Theorem 2. (Local Lower Bound) Let $\mathcal{X} = \mathcal{S}_d(0,1)$, for any θ_{\star} and T large enough, it exists $\epsilon > 0$ such that:

 $\min_{\pi} \max_{\|\theta - \theta_{\star}\| \le \epsilon} \mathbb{E} \left[R_{\theta}^{\pi}(T) \right] = \Omega \left(d \sqrt{\frac{T}{\kappa_{\star}}} \right).$

where ϵ is small enough that $\forall \theta \in \{ \| \theta - \theta_{\star} \| \leq \epsilon \}$ we have $\kappa_{\star}(\theta) = \Theta(\kappa_{\star}).$

 \checkmark the upper-bound is *optimal* for large T. \rightsquigarrow the lower-bound holds for all instances θ_{\star} .

IDEAS BEHIND THE LOWER BOUND

Objective and approach

- We shoot for a *problem-dependent* lower-bound,
- usual approaches consider worst-case over *all possible instances*,
- inspired by [Simchowitz et al., ICML'20] \rightarrow local lower-bound, • worst-case over nearby alternatives around a given problem instance.

• Formal proof: thanks to self-concordance property.

Transitory regime and detrimental arms

• Detrimental arm \mathcal{X}_{-} : low-information and large gap: \checkmark far left tail of the reward signal:

• Transitory regime: how long before discarding detrimental arms:

$$R^{\operatorname{trans}}_{\theta_{\star}}(T) \leq \min\left(\kappa_{\varkappa}, \sum_{t=1}^{T} \mathbb{1}(x_t \in \varkappa)\right).$$

• Fast if the proportion of detrimental arms is small:

Proposition 1.	(Transitory regre	t) With h.p :
$R^{\mathrm{trans}}(T)$	$\lesssim_T d^2 + dK$	if $ \mathcal{X}_{-} \leq K$,
$R^{\mathrm{trans}}(T)$	$\lesssim_T d^3$	if $\mathcal{X} = \mathcal{B}_d(0,1)$.

 \rightsquigarrow independent of κ_{χ} for reasonable configurations!

ALGORITHM AND EXPERIMENTS

for $t = \{0, ..., T\}$ do (*Learning*) Solve $\hat{\theta}_t = \arg \min_{\theta} \mathcal{L}_t(\theta)$.

NON-LINEARITY: BLESSING OR CURSE ?

From LB to LogB

 $\mathbb{E}[\boldsymbol{r_t}|\boldsymbol{x_t}] = \boldsymbol{x_t}^\mathsf{T}\boldsymbol{\theta_\star}$

$\mathbb{E}[\boldsymbol{r_t}|\boldsymbol{x_t}] = (1 + \exp(-\boldsymbol{x_t}^{\mathsf{T}}\boldsymbol{\theta_{\star}}))^{-1}$

 $\hat{\theta}_t \bullet$

 $\theta_{\star} \bullet$

Impact on the learning

Different richness of information associated with sampling an arm: **LB** same everywhere, LogB high in the center, low in the tails!

High-level idea

- We consider a given instance parametrized by θ_{\star} ,
- let π denote a policy that outputs a sequence of arms, and $R^{\pi}_{\theta_{\perp}}(T)$ the induced expected regret.

Small regret \leftrightarrow low exploration

$$R_{\theta_{\star}}^{\pi}(T) \propto 1/\kappa_{\star} \sum_{t=1}^{T} \|x_t - x_{\star}(\theta_{\star})\|^2, \quad x_{\star}(\theta_{\star}) = \arg\max_{x \in \mathcal{X}} \mu(x^{\mathsf{T}}\theta_{\star})$$

- $R^{\pi}_{\theta_{\star}}(T)$ small $\leftrightarrow x_t \simeq x_{\star}(\theta_{\star})$,
- directions orthogonal to $x_{\star}(\theta_{\star})$ are poorly explored!
- Larger $\kappa_{\star} \rightarrow$ smaller impact when deviating from $x_{\star}(\theta_{\star})!$

Low exploration \leftrightarrow large set of plausible alternative

• We quantify the *similarity* between instances θ , θ_{\star} under policy π by the *discrepancy*

 $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta_{\star}}\right)$

large $D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta_{\star}}\right) \to easy$ to distinguish θ and θ_{\star} under π , small $D_{\mathsf{KL}}(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{\star}}) \to hard$ to distinguish θ and θ_{\star} under π . $\{D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta_{*}}\right) \leq 1\}$

$$D_{\mathsf{KL}}\left(\mathbb{P}^{\pi}_{\theta}, \mathbb{P}^{\pi}_{\theta_{\star}}\right) \propto \sqrt{\frac{T}{\kappa_{\star}}} \|\theta - \theta_{\star}\|^{2}$$

(*Planning*) Solve $(x_t, \theta_t) \in \arg \max_{\mathcal{X}, \mathcal{C}_t(\delta)} \mu(x^{\intercal}\theta)$. Play x_t and observe reward r_{t+1} . end for

where $\mathcal{L}_t(\theta)$ and $\mathcal{C}_t(\delta)$ are the log-likelihood function and confidence set associated with the learning problem.

Parameter-based optimism

- Enforce optimism through parameter-search (OFUL-like), and not bonus-based approach.
- This yields an *adaptive* algorithm: no tuning needed to adapt to the structure of the decision set.

Tractable algorithm

- We also introduce a *convex relaxation* of the confidence set $C_t(\delta)$ Of [Faury et al., ICML'20] .
- No non-convex optimization routine (\neq previous work).

Practical improvements

Despite non-linearity \rightarrow available conf. set. C_t for LogB, [Faury et al, Improved Optimistic Algorithms for Logistic Bandits, ICML'20] Some regions are *harder* to learn that other \rightarrow the conf. set. C_t is *not* an ellipsoid!

Impact on the predicted performance

- **LogB** deviation in parameters \rightarrow little to no deviation in performance *in the tails*
 - $\|\theta \theta_{\star}\| = \delta \quad \Rightarrow \quad \mu(x^{\mathsf{T}}\theta) \approx \mu(x^{\mathsf{T}}\theta_{\star}).$

Open question: does *easy* prediction cancel out *hard* learning?

• large κ_{\star} degrades the richness of acquired information, $\rightarrow D_{\mathsf{KL}}(\mathbb{P}^{\pi}_{\theta},\mathbb{P}^{\pi}_{\theta_{\star}})$ decreases with κ_{\star} .

Tension and trade-off

• Policy π cannot perform well on two *distinct* instances, • but may not yield *similar* information.

Trade-off

- Let π perform well for θ_{\star} ,
- consider an alternative instance θ such that $\|\theta \theta_{\star}\|^2 \approx \sqrt{\frac{\kappa_{\star}}{T}}$,
- the regret of π for the instance θ must be large:
- $R_{\theta}^{\pi}(T) \approx 1/\kappa_{\star} \sum_{t=1} \|x_t x_{\star}(\theta)\|^2 \approx 1/\kappa_{\star} \sum_{t=1} \|x_{\star}(\theta_{\star}) x_{\star}(\theta)\|^2$
 - $\approx T \|\theta_{\star} \theta\|^2 / \kappa_{\star} \approx \sqrt{T / \kappa_{\star}}.$

CONCLUSION

• Our conclusion contrasts with previous work:

Logistic Bandit: non-linearity makes the problem **easier**!

- Regret-upper bound with exponential improvement.
- First problem-dependent lower-bound for Logistic Bandit.
- Fully tractable, adaptive algorithm thanks to convex relaxation.

REFERENCES

- S. Filippi, O. Cappé, A. Garivier and C. Szepesvári. Parametric Bandits: The Generalized Linear Case. Proceedings of NIPS, 2010.
- F. Bach. Self-concordant analysis for logistic regression. *Electronic Journal of* Statistics, 2010.
- S. Dong, T. Ma and B. Van Roy. On the Performance of Thompson Sampling on Logistic Bandits. Proceedings of COLT, 2019.
- L. Faury, M. Abeille, C. Calauzène and O. Fercoq. Improved Optimistic Algorithms for Logistic Bandits. Proceedings of ICML, 2020.
- M. Simchovitz and D. Foster. Naive Exploration is Optimal for Online LQR. Proceedings of ICML, 2020.