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Short English abstract. In this dissertation we present recent contributions to the problem of
optimization under bandit feedback through the design of variance-sensitive confidence intervals.
We tackle two distincts topics: (1) the regret minimization task in Generalized Linear Bandits
(GLBs for short, a broad class of non-linear parametric bandits) and (2) the problem of off-line
policy optimization under bandit feedback. For (1) we study the effects of non-linearity in GLBs
and challenge the current understanding that a high level of non-linearity is detrimental to the
exploration-exploitation trade-off. We introduce improved algorithms as well as a novel analysis
that prove that if correctly handled the regret minimization task in GLBs is not necessarily
harder than for their linear counterparts. It can even be easier for some important members
of the GLB family such as the Logistic Bandit. Our approach leverages a new confidence
set which captures the non-linearity of the reward signal through its variance, along with a
local treatment of the non-linearity through a so-called self-concordance analysis. For (2) we
leverage results from the distributionally robust optimization framework to construct asymptotic
variance-sensitive confidence intervals for the counterfactual evaluation of policies. This allows
to ensure conservatism (sought out by risk-averse agents) while searching off-line for promising
policies. Our confidence intervals lead to new counterfactual objectives which, contrary to their
predecessors, are more suited for practical deployment thanks to their convex and composite
natures.

Titre en Français. Intervalles de Confiance Sensibles à la Variance: Applications aux Bandits
Paramétrique et Bandits Hors Ligne.

Résumé court en Français. Cette thèse présente des contributions récentes au problème
d’optimisation sous feedback bandit, à travers la construction d’intervalles de confiance sen-
sibles à la variance. Nous traitons deux aspects distincts du problème: (1) la minimisation
du regret pour les bandits à modèle linéaire généralisé (GLBs), une large classe de bandits
paramétriques non-linéaires et (2) le problème d’optimisation de politique hors ligne sous signal
bandit. Concernant (1) nous étudions les effets de la non-linéarité dans les GLBs et remet-
tons en question la compréhension actuelle selon laquelle des hauts niveaux de non-linéarité ne
peuvent être que préjudiciables à l’équilibre exploration-exploitation. Des algorithmes améliorés
suivis d’une nouvelle méthode d’analyse montre que lorsque correctement manipulé, le problème
de minimisation du regret dans les GLBs n’est pas nécessairement plus dur que pour leur con-
trepartie linéaire. Il peut même être significativement facilité pour certains membres importants
de la famille GLB comme le bandit logistique. Notre approche utilise de nouveaux ensembles
de confiance sensibles à la non-linéarité au travers de la variance qu’elle impose à la fonction
récompense, accompagnés d’un traitement local de la non-linéarité au travers d’une analyse dite
auto-concordante. Concernant (2) nous utilisons des résultats de la littérature de l’optimisation
robuste afin de construire des intervalles de confiance asymptotiques sensibles à la variance pour
l’évaluation contrefactuel de politiques. Cela permet d’assurer du conservatisme (désirable pour
des agents averses au risque) lors de la recherche hors-ligne de politiques prometteuses. Cet
interval de confiance engendre de nouveaux objectifs contrefactuels qui sont plus adaptés à des
applications pratiques, car convexes et de nature composites.

Key words: machine learning, confidence intervals, decision-making, bandit algorithm, linear
bandit, generalized linear bandit, counterfactual estimation, off-line optimization.
Mots-clefs: apprentissage automatique, processus décisionnel, algorithme bandit, bandit linéaire,
bandit linéaire généralisé, estimation contrafactuelle, optimisation hors-ligne.
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Introduction

1 High level presentation of the thesis

This dissertation presents recent contributions to the problem of sequential decision-making
under uncertainty, an important formalization of countless real-world situations where one re-
peatedly interacts with an unknown environment in order to achieve a specific goal. In this
contexts any decision-making agent inevitably faces a fundamental difficulty: how to efficiently
achieve one’s goal while simultaneously reasoning about the potential outcomes (often corrupted
by noise) of the available actions? Behind this broad question lies a fundamental dilemma of se-
quential decision-making, known as the exploration-exploitation trade-off. To succeed the agent
must achieve a careful balance between two conflicting objectives: increase its knowledge by
probing the environment (exploration) and leverage the information acquired so far to enhance
its performance (exploitation). Designing intelligent agents that achieve such a trade-off is cen-
tral to the development of artificial intelligence, and at the heart of machine learning fields such
as bandit optimization - the topic of this dissertation. When learning under bandit feedback,
the agent enters a repeated game with the environment; it sequentially plays some available ac-
tions of which the outcomes are noisy random variables referred to as rewards. The goal of the
agent can be, for instance, to maximize its cumulative reward over time (regret minimization)
or identify the best actions within as few interactions as possibles (pure exploration). Albeit
adopting a seemingly simplistic setting, the bandit optimization problem compactly captures
many learning-theoretic difficulties of sequential decision-making under uncertainty. More im-
portantly, it allows for a neat and precise theoretical treatment, which has brought forward
clear and portable principles. This portability was particularly well-illustrated through the rise
of Internet technologies and services, which prompted the deployment of bandit algorithms for
a great variety of tasks - e.g A/B testing, news/movies recommendation and ad-placement.
A natural idea when playing with an unknown environment is to estimate the environment’s

response to one’s actions. This task is made harder when this response is stochastic, as one
must then reason about the plausible environments that are likely to have generated the se-
quences of rewards so far observed. This rationale has driven most of the research in sequential
decision making under uncertainty - the bandit optimization problem being no exception. It
is for instance central to address the regret minimization problem thanks to the optimism-in-
face-of-uncertainty principle, which in order to efficiently balance exploration and exploitation
prescribes playing the action that appears to be the most rewarding in the most favorable plau-
sible environment. At this point the notion of plausible environment may still seem abstract to
the reader; throughout the bandit literature it has been formalized through the construction of
confidence intervals. Designing tight confidence intervals and appropriately leveraging them for
the task at hand has been instrumental in the development of efficient bandit algorithms.
This thesis follows this rationale and presents contributions to two distinct and almost or-
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6 1. High level presentation of the thesis

thogonal aspects of the bandit optimization problem: (1) the sequential optimization (i.e regret
minimization) of generalized linear models under bandit feedback and (2) the offline evaluation
and optimization of policies under logged bandit feedback. Our results rely on new confidence
intervals, each adapted to the learning-theoretic challenges of each task. They illustrate how the
careful construction of appropriate confidence intervals can simultaneously bring new theoretical
insight and lead to the design of algorithms with improved theoretical guarantees. This natu-
rally translates into enhanced practical performances and sometimes substantially simpler and
more efficient algorithms. We present our results into two distinct parts, for they fundamentally
lie at two different ends of the spectrum of bandit optimization.

Part I. Non-linearity in parametric bandits : an unavoidable curse?

Countless real-world problems are fundamentally non-linear; in order to address them numerous
efforts have been made within the machine learning community to introduce ever more expressive
models. Such efforts have been particularly successful in the supervised learning setting, where
the advent of deep neural networks has revolutionized the field. A similar success-story is
however still missing for sequential decision-making, where a finer understanding of such models
is necessary to efficiently tackle many real-world environments. To achieve this an important
missing part of the puzzle consists in describing the effect of non-linearities on the exploration-
exploitation trade-off. The first part of this thesis aims at answering this question through
the careful study of a generic class of parametric bandits known as Generalized Linear Bandits
(GLBs). Indeed, it offers a simple and uncluttered framework to isolate and study the effects of
non-linearity, while still being rich enough to be relevant for many practical applications.
A GLB model postulates that the expected reward associated to an action is obtained by com-

puting a linear transformation of the action (seen as a vector in an Euclidian space), to which
is then applied a non-linear map µ. While such models have already undergone meticulous
scrutiny in the literature, the current conclusion is that the more non-linear µ is, the harder the
learning problem is. Indeed, the regret guarantees of existing algorithms all scale linearly with
κ, a constant measuring the function µ’s degree of non-linearity. Unfortunately κ is dispropor-
tionally large even for reasonable models, which suggests that non-linearity is highly detrimental
to the algorithms’ performance. Whether such behavior is unavoidable (i.e it is inherited from
a fundamental difficulty of the problem) or whether it is the consequence of a sub-optimal al-
gorithmic design (and/or a loose analysis) is still unknown. Our results fill this theoretical gap
by carefully analyzing the effects of non-linearity in the GLB framework through the lens of
improved algorithms based on the celebrated optimism-in-face-of-uncertainty principle. At the
heart of our approach is the design of refined confidence intervals (sensitive to the variation in
variance of the reward signal, acting in GLBs as a proxy for the level of non-linearity), along with
a careful treatment of non-linearity where the notion of local information is paramount. Our
algorithms enjoy exponentially smaller regret than previous approaches and unveil a much more
nuanced aspect on the effects of non-linearity. We show that asymptotically such effects fade
away as algorithms enter regimes where the reward signal appears (locally) as linear. In most
favorable cases this yields a surprising conclusion: some highly non-linear problems turn out
to be dramatically easier than their linear counterparts. We also tie non-linearity’s detrimental
potential to a necessary burn-in phase during which any algorithm must uniformly explore its
environment. In some worst-case configuration, a high level of non-linearity can significantly
impact the length of this transitory phase. Below we sum-up the outline of this part of the
dissertation and our different contributions on the study of GLBs.

Chapter 1. From Multi-Armed Bandits to Generalized Linear Bandits The goal
of this chapter is to formally introduce important notions of sequential decision-making in the
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bandit setting and present the state-of-the-art material that will be needed for the rest of the
dissertation. We first present the well-known multi-armed bandit setting, which here serves
mostly to introduce notations and key quantities (e.g regret, confidence intervals, ...). We use
this occasion to provide some basic intuition on the exploration-exploitation trade-off and the
optimism in face of uncertainty principle. We examine the limitations of this framework; this
leads us to consider the parametric bandit setting. We dedicate some time discussing the lin-
ear bandit problem and some key insights from the related literature; namely the optimism
principle for parametric bandits and the construction of confidence sets through appropriate
tail-inequalities. Again we examine the limitations of this setting; the need to understand richer
reward structures and to cover reward distributions of greater practical relevance motivates our
study of generalized linear bandits. We review existing approaches for this framework and iden-
tify an important weakness; high levels of non-linearity dramatically hinders the performance of
existing algorithms. We discuss the challenges in alleviating this behavior and give a brief sum-
mary of our approach and contributions. We finish this chapter by detailing some preliminary
technical results that will be used throughout the dissertation.

Chapter 2. Variance-Aware Confidence Sets for GLBs This chapter aims at deriving
improved confidence sets for GLBs. We first provide some intuition on a “candidate” set that fits
our requirements, obtained by an asymptotical analysis in a random-design setting. To prove its
validity in the general bandit setting we provide a new concentration result based on the theory
of self-normalized process: a Bernstein-like tail-inequality for self-normalized martingales. We
review its ties, similarities and differences with previous work before applying it to the design
of an improved confidence set for GLBs. The main feature of this confidence set resides in its
local variance sensitivity which captures the effective level of non-linearity in the environment.
This feature is central to the rest of our contributions as it allows for a refined local treatment of
the non-linearity. We present several variants as well as an extension to a weighted martingale
version which will be used for non-stationary environments. This chapter contains a detailed
presentation of results published in:

• Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq (2020a). “Improved
Optimistic Algorithms for Logistic Bandits” in Proceedings of the 37th International Con-
ference on Machine Learning (ICML).

• Marc Abeille, Louis Faury and Clément Calauzènes (2021). “Instance-Wise Minimax Op-
timal Algorithm for Logistic Bandits” in Proceedings of the 24th International Conference
of Artificial Intelligence and Statistics (AISTATS).

Chapter 3. Locality-Sensitive Algorithms for GLBs In this chapter we apply our con-
fidence set from Chapter 2 to the design of improved self-concordant GLB algorithms. We
introduce two algorithms which both rely on this enhanced confidence set but differ in how they
enforce optimism. For both algorithms we prove regret upper-bounds that tell a nuanced story
about the effects of non-linearity. Such effects are indeed deferred to a second-order term of
the regret, tied to a transitory regime during which the algorithms search for highly rewarding
areas of the action set. The regret suffered during this phase is still negatively impacted by
the non-linearity but becomes negligeable for large horizons as the algorithms enter a permanent
regime. Non-linearity then no longer plays a role; only the reward sensitivity around the optimal
action does. In addition to such a contrasting conclusion, our algorithms display a dramatic
improvement over previous approaches as they enjoy regret upper-bounds that are exponentially
smaller w.r.t problem-dependent constants. The end of the chapter is dedicated to the Logistic
Bandit setting, for which we identify configurations where non-linearity does not even impact
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the transitory phase. This ultimately removes its detrimental effects from the regret bounds,
even for short horizons. We also derive a problem-dependent regret lower-bound in the Logistic
Bandit setting, proving that in the permanent regime our algorithms are minimax-optimal w.r.t
the dimension d, the horizon T and a constant κ that embodies the effects of non-linearity.
We conclude this chapter with some numerical experiments illustrating our theoretical findings.
This chapter contains and improves results from:

• Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq (2020a). “Improved
Optimistic Algorithms for Logistic Bandits” in Proceedings of the 37th International Con-
ference on Machine Learning (ICML).

• Marc Abeille, Louis Faury and Clément Calauzènes (2021). “Instance-Wise Minimax Op-
timal Algorithm for Logistic Bandits” in Proceedings of the 24th International Conference
of Artificial Intelligence and Statistics (AISTATS).

Chapter 4. Extension to Non-Stationary Environments The goal of this chapter is
to extend the lessons learned in the stationary case to non-stationary environments. We first
study the case of piece-wise stationary environments and extend existing approaches from non-
stationary linear bandits, based on the forgetting of old interactions. To do so we leverage the
weighted version of our tail-inequality for self-normalized martingale from Chapter 2, and show
that the conclusions from the stationary setting gracefully extend to this non-stationary case.
We then turn our attention to environments where non-stationarity is much less structured -
for instance environments where the reward model drifts over time. In this setting the learning
challenges are mixed with tracking difficulties, which hardens the treatment of non-linearity.
We propose an algorithm which simultaneously addresses both challenges, however leaving open
the question of the optimal scaling w.r.t κ in this general non-stationary setting. This chapter
contains and improves results from:

• Yoan Russac, Louis Faury, Olivier Cappé, Aurélien Garivier (2021). “Self-Concordant
Analysis of Generalized Linear Bandits under Forgetting” in Proceedings of the 24th In-
ternational Conference of Artificial Intelligence and Statistics (AISTATS).

• Louis Faury, Yoan Russac, Marc Abeille, Clément Calauzènes (2021). “A Technical Note
on Non-Stationary Parametric Bandits: Existing Mistakes and Preliminary Solutions” in
Proceedings of the 31st International Conference on Algorithmic Learning Theory (ALT).

Chapter 5. Summary and Future Work In this chapter, we summarize our contributions
and review directions for future research and remaining open questions.

Part II. Robust learning for learning under logged bandit feedback

The online setting studied in the previous part is rich in theoretical insights and teachings,
however is not always best fitted for real-world applications for several reasons. For instance,
closely following the level of exploration recommended by theory is often costly in the short term.
While an appropriate amount of exploration is optimal in the long-term, it can also be the source
of an immediate loss of revenue (compared to a greedy approach) - often prohibitive for industrial
applications which have to comply with short term revenue constraints. Decision-makers are
more inclined to have a “hands-on” control of exploration and prefer being able to manipulate
it easily, in light of their current constraints. Second, few decision-makers truly face cold-start
problems like the ones we described in the first part; by leveraging extraneous data and expert
knowledge of the problem at hand, they can design reasonable strategies even before their first
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interaction with the environment. The main challenge then shifts to the improvement of such
policies with data-driven approaches. However, the risk-aversive nature of many industrial actors
which face bandit problems often speaks in disfavor of off-the-shelve online bandit optimization
solution. It is frequently desirable in practical applications to ensure some stability in the
decision-making process; before updating a recommendation engine, one would like to guarantee
that this new version will generate at least as much revenue as its predecessors. This requires the
development of a counterfactual reasoning, and the construction of specific proxy which allows
to answer the question: “what revenue could have I hoped to collect if I had acted differently?”.
This requires a consequent amount of data, and modifications to the decision-making process
cannot be made on-the-fly. A typical illustration of this learning problem arises when an initial
policy (a strategy for selecting actions) has already been deployed, and that its interactions (i.e
the played actions and their outcomes) with the environment have been recorded. The goal of
the learner is to leverage such interactions to learn a better strategy.
This problem, often referred to as learning from logged bandit feedback or off-line policy

optimization, is the subject of the second part of this dissertation. The main challenge inherent
to this learning problem originates from the fact that available observations are biased towards
actions favored by the initial policy - the one that was effectively deployed. The current blueprint
for addressing this issue is to design counterfactual estimators. With only input the recorded
feedback, their purpose is to forecast the performance of any other policy as if it was taking the
actions by itself. This enables the search for an optimal system without having to exhaustively
try-out online all the possible alternative strategies. The main drawback of this approach is
that counterfactual estimators come with large variance; directly using them as an absolute
criterion to decide for the deployment of a new policy is risky, and can come with severe post-
decision surprise (i.e the actual performance of the selected policy is much worse than what was
forecasted). Previous work alleviated this issue by resorting to confidence intervals quantifying
the variance of counterfactuals estimators, and by penalizing policies for which performance
evaluation is subject to high-variance. This however comes at the cost of several practical
limitations; mainly, the derived objectives for optimizing the initial policy are non-convex and
do not undergo stochastic optimization, necessary to handle large logged datasets.
In this part of the dissertation we present an alternative approach which relies on the distri-

butionally robust principle. It allows us to circumvent these practical issues altogether without
sacrificing performance. At the heart of this new approach are asymptotic confidence intervals
obtained through the distributionally robust optimization (DRO) framework. Under the DRO
formulation, one replaces the empirical distribution of observations by the most pessimistic dis-
tribution over the set of distributions coherent with the empirical observations - the ambiguity
set. We show that this allows to derive confidence intervals for the performance of any policy,
which properties match the challenges of off-line policy evaluation. Furthermore, we prove that
they yield better behaved policy optimization objectives; namely convex objectives which bear
stochastic optimization. We now sum-up the outline of this part and our different contributions.

Chapter 6. Learning from Logged Bandit Feedback The goal of this chapter is to in-
troduce the problem of learning from logged feedback. After providing a formal definition, we
review existing approaches based on propensity importance re-weighting and its variants. We
highlight the issues posed by the high variance of the resulting estimators for risk-averse deci-
sion makers. We then focus on describing the counterfactual risk minimization principle as a
conservative solution to limit this drawback and avoid post-decision surprise. We review the
advantages and limitations of this approach, which we will try to overcome in the following
chapter.
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Chapter 7. Distributionally Robust Policy Evaluation and Optimization We start
this chapter by detailing the distributionally robust framework, with a particular focus on ro-
bust formulation relying on f -divergence based ambiguity sets. We discuss how the existing
guarantees of robust estimators gracefully meet with the challenges of the learning from logged
bandit feedback problem. From these guarantees we also construct asymptotic confidence inter-
vals for offline policy evaluation, computable through solving convex problems. We apply this
tool for policy optimization; after providing approximate algorithms for Kullback-Leibler based
ambiguity sets, we give a general policy optimization strategy relying on generic f -divergence
based ambiguity sets. This strategy relies on a convex policy optimization objective, which by
its composite nature is compatible with stochastic optimization. From a practical stand-point,
this is a clear improvement over previous approaches. Furthermore, we show that it enjoys
good empirical results and competes with more computationally demanding alternatives. This
chapter is adapted from the following publications:

• Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova and Flavian Vasile (2020b).
“Distributionally Robust Counterfactual Risk Minimization” in Proceedings of the AAAI
Conference on Artificial Intelligence.

• Otmane Sakhi, Louis Faury and Flavian Vasile (2020). “Improving Offline Contextual
Bandits with Distributional Robustness” in Proceedings of the RecSys Workshop on Rein-
forcement Learning and Robust Estimators for Recommendation Systems (REVEAL’20).

Chapter 8 Summary and Future Work In this chapter, we summarize our contributions
and review directions for future research.

2 Présentation du contenu de la thèse
Cette thèse présente de récentes contributions au problème de décision séquentielle contre
l’incertain, une formalisation importante de nombreuses situations réelles où un agent agit de
manière répétée avec un environment inconnu dans le but de remplir un certain objectif. Sans
connaissance précise de l’environnement cet agent se heurte inévitablement à une difficulté fon-
damentale: comment remplir efficacement son but tout en raisonnant quant au conséquences
(potentiellement corrompues par un bruit inhérent à l’environnement) de ses actions? Der-
rière cette question presque réthorique se cache un dilemme fondamental de la prise de décision
séquentielle, connu sous le nom de compromis exploration-exploitation. Ce compromis reflète
le besoin de l’agent à atteindre une balance délicate entre deux principes contradictoires; aug-
menter sa connaissance en sondant uniformément l’environnement (exploration) tout en utilisant
l’information acquise jusqu’ici pour améliorer sa performance (exploitation). Construire des
agents autonomes qui remplissent ce compromis est central au développement de l’intelligence
artificielle, et est au cœur de nombreux domaines de l’apprentissage automatique comme celui
des bandits - le sujet de cette thèse. Lorsqu’il apprend d’un signal de type bandit un tel agent
s’engage dans un jeu répété avec l’environnement; séquentiellement, il joue une action parmi
un ensemble fini et fixe d’actions disponibles et reçoit comme récompense la réalisation d’une
variable aléatoire. Le but de l’agent, par exemple, est de maximiser la somme des récompenses
perçues dans le temps (minimization du regret) ou d’identifier la meilleure action après un min-
imum d’interactions (exploration pure). Malgré son aspect simpliste à première apparence, ce
modèle d’apprentissage capture de nombreuses difficultés fondamentales du problème de déci-
sion séquentielle contre l’incertain. Plus important encore, il permet un traitement théorique
soigné et précis qui a déjà accouché de principles clairs et polyvalents. Cette polyvalence est
particulièrement bien illustrée à travers l’avénement des technologies et services de l’Internet,
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qui a déclenché le déploiement d’algorithmes de bandit pour des tâches diverses et variées - par
exemple l’A/B testing, la recommandation en ligne d’articles de presse ou de publicités.
Lors d’un jeu contre un environnement inconnu, une idée naturelle consiste à estimer et

prédire la réponse de l’environnement à chacune des différentes actions. Cette tâche est rendue
difficile lorsque cette réponse est stochastique, ce qui oblige à raisonner quant à l’ensemble
des environnements plausibles qui auraient pu générer (avec haute probabilité) l’ensemble des
récompenses observées jusqu’ici. Ce raisonnement a motivé une grande partie de la recherche
sur la prise de décision séquentielle contre l’incertain - le problème du bandit ne faisant pas
exception.
Cette idée est en effet primordiale pour addresser le problème de minimization du regret

grâce au principe d’optimisme face à l’incertain, qui afin d’atteindre un compromis efficace
entre exploration et exploitation prescrit de jouer l’action qui apparait la plus gratifiante à la
vue de l’ensemble des environnements plausible. La notion d’environnement plausible peut ici
paraître floue au lecteur; dans la littérature des bandits, elle est formalisée par des intervalles
de confiance. Construire des intervalles de confiance étroits et les utiliser à meilleur escient a
été déterminant pour le développement d’algorithmes de bandit efficaces.
Cette thèse poursuit cet effort et présente de récentes contributions dans ce cadre, pour deux

aspects distincts et presque orthogonaux du problème d’optimisation bandit; (1) la minimization
du regret pour les bandits linéaires généralisés et (2) l’évaluation et l’optimisation hors-ligne
de politiques sous un signal bandit historique et enregistré. Nos résultats se basent sur de
nouveaux intervalles de confiance, chacun adapté aux difficultés fondamentales d’apprentissage
propres à chacune de ces tâches. Ils illustrent comment la construction délicate d’intervalles
de confiance adaptés peut simultanément apporter de nouveaux aperçus théoriques et amener
à la construction de nouveaux algorithmes dont les garanties théoriques sont améliorées. Ces
algorithmes sont plus performants que leur prédécesseurs, et parfois plus simples à déployer.
Nos résultats portant sur deux parties fondamentalement éloignées sur le spectre des problème
de bandit, nous les présentons dans deux parties distinctes.

Non-linéarité dans les bandit paramétrique: un mal inévitable?

La grande majorité des environnements réels sont fondamentalement non-linéaires, et un effort
continu dans le domaine de l’apprentissage automatique a consisté à introduire des modèles de
plus en plus expressifs afin de modéliser cette non-linéarité. Cet effort a été particulièrement
couronné de succès en ce qui concerne l’apprentissage supervisé, avec l’avénement des réseaux
de neurones qui ont indéniablement révolutionné le domaine. Ce succès ne s’est pas généralisé
(pour l’instant) au problèmes de décision séquentielle, où une compréhension plus fine de ces
modèles est nécessaire (et manquante) afin d’addresser efficacement des problèmes pratiques.
Pour attendre ce but, une importante pièce manquant du puzzle consiste à comprendre les
interactions entre non-linéarité et compromis exploration-exploitation. Cette première partie de
la thèse s’efforce de répondre à cette question, à travers l’étude attentive d’une classe générique
de bandit paramétriques: les bandits à modèle linéaire généralisé (GLBs, d’après l’acronyme
anglais). Cette classe de problèmes offre une formulation permettant d’isoler et d’étudier les
effets de la non-linéarité de façon particulièrement nette et précise, tout en restant suffisamment
riche pour être pertinente pour un grand nombre de cas pratiques.
Dans un GLB, la récompense moyenne associée à une action (comprise comme un certain

vecteur dans un espace Euclidien) est modélisée au travers d’une structure linéaire sous-jacente
(un produit scalaire avec un vecteur inconnu représentant l’environnement) à laquelle est ap-
pliquée une fonction non-linéaire µ. Si de tels modèles ont déjà fait l’objet d’études théoriques
poussées dans la littérature, la conclusion de ces études est quelque peu décevante puisqu’elle
suggère que plus la fonction µ est non-linéaire, plus le problème d’apprentissage est dur. En
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effet, les garanties de regret des algorithmes existants évoluent toutes linéairement avec une
constante κ qui mesure le degré de non-linéarité de µ. Cette constante est malheureusement
disproportionnément grande pour de nombreux modèles, ce qui suggère que la non-linéarité est
particulièrement préjudiciable à la bonne performance des algorithmes. Savoir si un tel com-
portement est inévitable (i.e il est lié à une difficulté fondamentale du problème d’apprentissage)
ou s’il est la conséquence d’une conception sous-optimale des algorithmes est encore une ques-
tion ouverte. Nos résultats comblent cet écart théorique au travers d’une analyse méticuleuse
des effets de la non-linéarité dans le cas GLB et d’algorithmes améliorés basés sur le célèbre
principe d’optimisme face à l’incertain. Au coeur de notre approche se trouve la dérivation
de nouveaux ensembles de confiances, sensibles à la non-linéarité, ainsi qu’un traitement précis
de la non-linéarité où la notion d’information locale est primordiale. Nos résultats dévoilent
des aspects de la non-linéarité qui sont nettement plus nuancés; en particulier ils prouvent que
pour des interactions suffisamment longues, la non-linéarité peut être bénéfique au compromis
exploration-exploitation. En cela, nos algorithmes bénéficient de garanties théoriques améliorant
l’état de l’art par des facteurs exponentiels dans plusieurs cadres d’apprentissage (e.g station-
naire et non-stationnaires). D’un autre côté, nous montrons que la non-linéarité peut tout de
même impacter de manière négative la durée d’une nécessaire phase d’exploration initiale du-
rant laquelle n’importe quel algorithme doit explorer son environnement uniformément. Nous
résumons le déroulé de cette partie ainsi que nos contributions dans les prochaines lignes.

Chapitre 1. Du Bandit Manchot au Bandit à Modèle Linéaire Généralisé Le but de
ce chapitre est de formellement introduire plusieurs notions importantes du problème de déci-
sion séquentielle dans le cadre bandit, et de présenter l’état de l’art nécessaire au reste de cette
dissertation. Nous commençons par présenter le problème bien connu du bandit manchot, qui
sert ici d’introduction à certaines notations et quantités clefs (e.g regret, intervalle de confiance).
Nous utilisons également cette occasion pour fournir de l’intuition sur le compromis exploration-
exploitation et le principe d’optimisme face à l’incertain. Nous discutons ensuite les limitations
du bandit manchot; cela nous amène à une importante extension, le bandit paramétrique. Nous
dédions une partie importante au bandit linéaire et à certains principes importants émergents de
cette littérature; en particulier, le principe d’optimisme dans les bandits paramétriques à travers
la construction d’ensembles de confiance par des inégalités de concentration appropriées. À nou-
veau, nous discutons les limitations de cette modélisation; le besoin d’utiliser des structures de
récompense plus riches et de couvrir un plus grande nombre de distributions de récompense nous
poussent à nous intéresser aux bandits à modèle linéaire généralisé. Nous présentons ce cadre
ainsi que les approches existantes en détails, examinons leurs désavantages ainsi que les défis
restants qui seront adressés dans cette thèse. Nous donnons un bref résumé de notre approche
et de nos contributions, et terminons ce chapitre en détaillant certains résultats préliminaires
qui seront utilisés au travers de cette dissertation.

Chapitre 2. Ensembles de Confiance Réactifs à la Variance pour les GLBs Ce
chapitre a pour but de dériver de nouveaux et plus étroits ensembles de confiance pour les GLBs.
Nous fournissons d’abord de l’intuition sur un ensemble de confiance “candidat” qui remplit nos
critères, obtenu par un argument asymptotique et sous un cadre dit de design aléatoire. Pour
prouver sa validité dans le cadre général du bandit, nous prouvons un nouveau résultat de
concentration basé sur la théorie des processus auto-normalisés: une inégalité de type Bernstein
sur les queues de distributions pour les martingales auto-normalisée. Nous discutons ses liens,
similarités et différences avec l’état de l’art avant de l’appliquer à la construction d’ensembles de
confiance améliorés pour les GLBs. La principale caractéristique de cet ensemble de confiance
réside dans sa sensibilité “locale” à la variance de la fonction récompense, qui capture son
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niveau de non-linéarité effectif. Nous présentons plusieurs variantes ainsi qu’une extension aux
martingales pondérées qui sera utilisée pour traiter des environnements non-stationnaires. Ce
chapitre contient une présentation détaillée des résultats publiés dans les articles suivants:

• Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq (2020a). “Improved
Optimistic Algorithms for Logistic Bandits” in Proceedings of the 37th International Con-
ference on Machine Learning (ICML).

• Marc Abeille, Louis Faury and Clément Calauzènes (2021). “Instance-Wise Minimax Op-
timal Algorithm for Logistic Bandits” in Proceedings of the 24th International Conference
of Artificial Intelligence and Statistics (AISTATS).

Chapitre 3. Algorithmes GLBs avec Sensibilité Locale Dans ce chapitre nous ap-
pliquons l’ensemble de confiance dérivé au Chapitre 2 à la construction d’algorithmes perfor-
mants pour le problème des bandits GLBs dits auto-concordants. Nous introduisons deux al-
gorithmes qui reposent sur ce nouvel ensemble de confiance mais diffèrent par la façon dont
ils imposent la notion d’optimisme. Nous prouvons des bornes majorant le regret de chaque
algorithme; elles explicitent les véritables effets de la non-linéarités, plus nuancés que l’état de
l’art ne le suggère. Ces effets sont délégués à un terme de second ordre du regret, associé à
une phase transitoire durant laquelle les algorithmes sondent l’environnement pour trouver des
zones d’action à forte récompense. Le regret subi pendant cette période est toujours négative-
ment impacté par la non-linéarité, mais devient négligeable pour de larges horizons alors que les
algorithmes rentrent dans un régime permanent. La non-linéarité arrête dès lors de jouer un rôle
et seule la sensibilité locale de la fonction récompense autour de l’action optimale compte. En
plus de cette conclusion en fort contraste avec l’état de l’art, nos algorithmes bénéficient d’une
amélioration significative par rapport à leur prédécesseurs. Leurs bornes de regret sont en effet
réduites par des facteurs exponentiellement grands en des constantes liées à la géométrie du prob-
lème. La fin de ce chapitre est dédiée à une étude plus poussée du bandit logistique, pour lequel
nous identifions des configurations où le rôle de la non-linéarité est davantage réduit puisqu’elle
n’impacte même plus la phase transitoire. En cela les effets négatifs de la non-linéarité sont
complètement effacés, même pour des horizons courts. Nous dérivons également une borne mi-
norante de regret pour le cas du bandit logistique qui prouve que nos algorithmes sont minimax
optimaux par rapport à la dimension du problème d, l’horizon T ainsi qu’une constante κ qui
incarne les effets de la non-linéarité. Nous concluons ce chapitre avec une brève étude numérique
illustrant nos résultats théoriques. Ce chapitre contient et améliore des résultats publiés dans:

• Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq (2020a). “Improved
Optimistic Algorithms for Logistic Bandits” in Proceedings of the 37th International Con-
ference on Machine Learning (ICML).

• Marc Abeille, Louis Faury and Clément Calauzènes (2021). “Instance-Wise Minimax Op-
timal Algorithm for Logistic Bandits” in Proceedings of the 24th International Conference
of Artificial Intelligence and Statistics (AISTATS).

Chapitre 4. Extension aux Environnements Non-Stationnaires Le but de ce chapitre
est d’étendre les différents enseignements du cas stationnaire aux environnements non-stationnaires.
Nous commençons par l’étude du cas stationnaire par morceaux pour lequel les approches exis-
tantes pour le bandit stationnaires sont basées sur le principle d’oubli. Pour cela, nous utilisons
la version pondérée de notre inégalité de concentration du Chapitre 2 et montrons que les con-
clusions obtenues dans le cas stationnaire s’étendent à ce type de non-stationnarité. Nous nous
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penchons ensuite sur des environnements où la non-stationnarité est moins structurée - par ex-
emple des environnements où la récompense évolue continuellement à travers l’horizon. Dans
ce cadre, les difficultés d’apprentissage se mêlent à des défis de suivi, ce qui complique le traite-
ment fin de la non-linéarité. Nous proposons un algorithmes qui adresse simultanément les deux
difficultés du problème mais laisse ouverte la question de l’optimalité en κ pour ce problème
plus général de non-stationnarité. Ce chapitre contient et améliore des résultats publiés dans
les articles:

• Yoan Russac, Louis Faury, Olivier Cappé, Aurélien Garivier (2021). “Self-Concordant
Analysis of Generalized Linear Bandits under Forgetting” in Proceedings of the 24th In-
ternational Conference of Artificial Intelligence and Statistics (AISTATS).

• Louis Faury, Yoan Russac, Marc Abeille, Clément Calauzènes (2021). “A Technical Note
on Non-Stationary Parametric Bandits: Existing Mistakes and Preliminary Solutions” in
Proceedings of the 31st International Conference on Algorithmic Learning Theory (ALT).

Chapitre 5. Résumé et Perspectives Dans ce chapitre, nous résumons nos contributions
et discutons les directions et perspectives de recherche futures.

Optimisation hors-ligne de politique: une formulation robuste en distribution

Le problème en ligne étudié dans la partie précédente est riche en aperçus et enseignements
théoriques, mais n’est malheureusement pas toujours le plus adapté à des applications pra-
tiques et ce pour plusieurs raisons. Par exemple, suivre finement le niveau d’exploration recom-
mandé par la théorie est souvent coûteux sur le court terme. Bien qu’une proportion appropriée
d’exploration soit optimale sur le long terme, elle est aussi la source d’une perte de revenu immé-
diat (en comparaison à l’approche gloutonne), ce qui est parfois prohibitif dans des applications
industrielles où l’agent se doit de répondre à des contraintes de revenu immédiats (par exemple
pour rester profitable). Dans de telles applications, les preneurs de décisions sont davantage at-
tirés par un contrôle plus “à la main” de l’exploration et préfèrent être capables de la manipuler
facilement et à la lumière de leurs contraintes à court terme. De plus, peu d’agents se retrou-
vent face à un problème de démarrage “à froid” comme celui décrit dans la partie précédente;
en utilisant des données extérieures ou la connaissance fine de ses experts, la plupart des acteurs
industriels sont capables de construire des stratégies efficaces avant même leur première interac-
tion avec l’environnement. Le défi principal est alors de réussir à améliorer ces stratégies grâce
aux données qu’elles collectent. Là encore, la nature averse au risque de ces acteurs industriels
lorsque confrontés à un problème de bandit joue souvent en défaveur des approches de bandits
en ligne. Il est en effet désirable lors d’applications pratiques d’assurer une certain stabilité du
processus de prise de décision. Par exemple, avant de déployer une nouvelle version d’un moteur
de recommandation il est souhaitable de pouvoir garantir que cette nouvelle version va générer
au moins autant de revenu que la précédente. Cela requiert le développement d’un raisonnement
dit contrafactuel et la construction de critères intermédiaires qui permettent de répondre à la
question: “quel revenu aurais-je pu espérer recevoir si j’avais agis différemment?”. En pratique
cela demande une quantité de données conséquente et les modifications du processus de prise
de décision ne peuvent être effectuées en ligne. Une situation typique illustrant cette probléma-
tique à lieu lorsqu’une politique (une stratégie selon laquelle des actions sont choisies) a déjà été
déployée et que ses interactions avec son environnement ont été enregistrées. Le but de l’agent
est alors d’utiliser cette donnée (souvent extrêmement volumineuse) afin de raffiner sa prise de
décision et de construire une politique encore plus profitable.
Ce problème, communément appelé apprentissage sous données bandit enregistrées ou optimi-

sation hors-ligne de politique, est le sujet de cette seconde partie de la dissertation. Le principal
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défi inhérent à ce problème d’apprentissage est lié au fait que les observations disponibles sont
biaisées vers les actions jugées comme supérieures par la politique initiale - celle qui a été dé-
ployée. Une des stratégies principales pour répondre à cette problématique est de construire
des estimateurs contrafactuels. Avec comme seule entrée l’interaction enregistrée leur objectif
est de dé-biaiser cette donnée afin de prédire la performance de n’importe quelle politique. Cela
permet de rechercher hors-ligne une stratégie optimale sans avoir à déployer en ligne toutes les
politiques potentielles. Le défaut principal de cette approche vient de l’importante variance
des estimateurs contrafactuels; les utiliser sans précautions comme un critère de décision absolu
est particulièrement risqué puisque l’écart entre la performance prédite et la performance réelle
d’une politique peut être important. Certains travaux adressent ce problème en employant des
intervalles de confiance quantifiant la variance des estimateurs contrafactuels et en pénalisant
les politiques pour lesquelles cette variance est grande. Cette approche connait cependant des
limitations pratiques; notamment, les objectifs numériques associés permettant d’optimiser la
politique initiale sont non-convexes et ne sont pas compatibles avec des approches d’optimisation
stochastiques, nécessaires pour la gestion de grands volumes de données enregistrées.
Dans cette partie de la dissertation nous présentons une approche alternative qui repose sur

le principe d’optimisation robuste en distribution. Elle permet de résoudre les problèmes sus-
mentionnés simultanément, tout en conservant les garanties théoriques des approches existantes.
À nouveau, le cœur de notre méthode repose sur un nouvel intervalle de confiance (cette fois
ci asymptotique) obtenu dans le cadre de l’optimisation robuste en distribution. Sous cette
formulation, la distribution empirique des données est remplacée par la distribution la plus
pessimiste parmi l’ensemble des distributions cohérentes avec les données. Ce principe permet
la construction d’intervalles de confiance sur la performance de nouvelles politiques répondant
aux défis de l’optimisation hors-ligne (e.g aversion au risque, grande variance, ..). De plus, ces
derniers engendrent des objectifs d’optimisation bien plus adaptés à des situations pratiques; ces
objectifs sont en effets convexes et compatibles avec les méthodes d’optimisation stochastiques
classiques. Nous présentons ci-dessous un bref résumé de l’organisation de cette partie.

Chaptitre 6. Apprentissage sous Données Bandit Enregistrées Le but de ce chapitre
est d’introduire formellement le problème d’apprentissage sous données bandit enregistrées.
Après une définition formelle du problème, nous discutons les différentes approches existantes
se basant sur la re-pondération des données et ses variantes. Nous illustrons les problèmes posés
par la variance importante de ces estimateurs pour les agents averses au risque. Nous nous
focalisons ensuite sur le principe de minimisation contrafactuelle du risque comme solution à
ce problème. Nous exposons les avantages ainsi que les limitations de cette approche que nous
nous efforcerons de résoudre dans le chapitre suivant.

Chapitre 7. Évaluation et Optimisation Robuste en Distribution de Politiques Nous
commençons ce chapitre en détaillant le principe d’optimisation robuste en distribution, avec
une attention particulière aux formulations robustes se basant sur des f -divergences. Nous illus-
trons comment les garanties des estimateurs robustes répondent aux défis de l’apprentissage sous
données bandit enregistrées. Grâce à ces garanties se construisent des intervalles de confiance
asymptotiques pour l’évaluation hors-ligne de politique, calculables en résolvant de simples prob-
lèmes convexes. Nous appliquons ensuite cet outil à l’optimisation hors-ligne de politique; après
avoir détaillé un premier algorithme reposant sur la divergence de Kullback-Leibler et illustrant
notre approche, nous donnons une stratégie générale basée sur des f -divergences génériques.
Nos méthodes reposent sur des objectifs convexes et composites, compatibles avec les méthodes
classiques d’optimisation stochastique. D’un point de vue pratique cela constitue un avantage
clair sur les approches existantes, ce qui se traduit par de meilleurs résultats empiriques. Ce
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chapitre est adapté des publications suivantes:

• Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova and Flavian Vasile (2020b).
“Distributionally Robust Counterfactual Risk Minimization” in Proceedings of the AAAI
Conference on Artificial Intelligence.

• Otmane Sakhi, Louis Faury and Flavian Vasile (2020). “Improving Offline Contextual
Bandits with Distributional Robustness” in Proceedings of the RecSys Workshop on Rein-
forcement Learning and Robust Estimators for Recommendation Systems (REVEAL’20).

Chapitre 8. Résumé et Perspectives Ce chapitre résume nos contributions et exposent
des futures directions de recherche.

3 Notations
We introduce here some mathematical notations that we use throughout the thesis.

Functions and Operators. Let f and g be two univariate, real valued functions and x, y ∈ R.
ḟ first derivative of f .
f̈ second derivative of f .
f = O(g) there exists t0 ∈ R and c ∈ R+ such that f(t) ≤ c·g(t) for all t ≥ t0.
f = Õ(g) f = O(g×polylog(·)).
f = Ω(g) there exists t0 ∈ R and c ∈ R+ such that f(t) ≥ c·g(t) for all t ≥ t0.
δx Dirac delta function at x ∈ R.
x ∨ y max{x, y}.
x ∧ y min{x, y}.

For any integer d ≥ 2 and any function f : Rd → R which is Fréchet differentiable at x ∈ Rd:
∇f |x ∈ Rd Fréchet derivative of f at x.

Linear Algebra. Let d ∈ N, x ∈ Rd and A,B ∈ Rd×d two positive semi-definite d×dmatrices.
‖x‖ `2-norm of x, i.e ‖x‖ =

√
xTx.

Bd(x, r) d-dimensional `2-ball centered at x and of radius r
Sd(x, r) d-dimensional `2-sphere centered at x and of radius r.
‖x‖A weighted `2-seminorm of x by A, i.e ‖x‖A =

√
xTAx.

Id d×d identity matrix.
1d, 0d d-dimensional vector which entries are all 1 (resp. 0).
A � B Löwner ordering of A and B, i.e A−B is positive semi-definite.
A � B A−B is positive definite.

Sets. Let k ∈ N \{0} and S a set.
[k] the set of integers from 1 to k.
|S| cardinality of S.
Sc complement of S (when there is no ambiguity about the ground set).
∆k k-dimensional simplex.

Randomness. For an event E we denote 1(E) the indicator function of E - i.e 1(E) = 1 if E
holds and 0 otherwise. Let {Xs}ts=1 be a sequence of random variables taking values in Rd; then
σ(X1, . . . , Xt) refers to the σ-algebra generated by X1, . . . , Xt.
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Chapter 1

From Multi-Armed Bandits to
Generalized Linear Bandits

The goal of this chapter is to formally introduce important notions of sequential decision-making
in the bandit setting and present the state-of-the-art material that will be needed for the rest of
the dissertation. We first present the well-known multi-armed bandit setting, which here serves
mostly to introduce notations and key quantities (e.g regret, confidence intervals, ..). We use
this occasion to provide some basic intuition on the exploration-exploitation trade-off and the
optimism in face of uncertainty principle. We examine the limitations of this framework; this
leads us to consider the parametric bandit setting. We dedicate some time discussing the linear
bandit problem and some key insights from the related literature (e.g the construction of confi-
dence sets through appropriate tail-inequalities). We examine the limitations of this setting; the
need to understand richer reward structures and to cover reward distributions of greater practi-
cal relevance motivates our study of generalized linear bandits. We review existing approaches
for this framework and identify an important weakness; high levels of non-linearity dramatically
hinders the performance of existing algorithms. We discuss the challenges in alleviating this
behavior and give a brief summary of our approach and contributions. We finish this chapter
by detailing some preliminary technical results that will be use throughout the dissertation.
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1.1 Multi-armed bandits

The stochastic Multi-Armed Bandit (MAB) framework describes a sequential-decision making
problem with a finite and static set of actions (also called arms). Each action has its own
intrinsic reward which can be observed when the action is played, and only up to some noise.
The learning agent enters a repeated game with the environment and aims to maximize her
expected cumulative pay-off without a-priori knowledge of the different actions’ rewards. To
fulfill this objective she must use her current knowledge of the world to play highly rewarding
actions (exploitation) and simultaneously increase her global knowledge of the environment by
refining her evaluation of poorly estimated actions (exploration). Such a situation is ubiquitous
in real-world problems and its study has a long history; it was first formalized to study clinical
trials and since then has also been also applied to various fields such as allocation in finance,
website optimization, web-routing, . . . From a theoretical standpoint, it has established itself
has a prominent framework in the sequential decision-making literature. This can reasonably
be attributed to its simplicity (in the positive sense of the term); it offers an immaculate setting
to study the exploration-exploitation dilemma, stripped of any unessential complexity. As a
result, there exist a substantial literature on the topic and numerous different approaches to
solve this problem. The goal of this section is not to provide an exhaustive review on MABs and
in-depth description of existing algorithms; instead we will use it to introduce some key concepts
(e.g exploration-exploitation dilemma, regret, optimism). This will be useful to introduce and
discuss parametric bandits (such as the linear bandit) which are the main focus of this part.

1.1.1 Learning problem

Setting. We describe here the stochastic MAB learning problem (see e.g Auer et al., 2002).
Let K ∈ N and denote A = [K] the available actions. Each action k ∈ A has an associated
reward distribution νk which is assumed to have a finite mean denoted µk. At each round t ≥ 1
the agent plays an action at ∈ A and receives a stochastic reward rt+1 drawn according to
the distribution νat . The agent’s decision is taken in an adaptive fashion: her behavior can
be represented by a policy π :Ft → ∆K where Ft = σ({as, rs+1}t−1

s=1) encodes the information
obtained so far.1 Of course, the set of distributions ν = {νk}k∈[K] is unknown to the agent and
therefore so is the optimal action (in terms of expected pay-off). We denote this action a? and
its associated expected reward µ?. Formally:

a? = arg max
k∈[K]

µk and µ? = max
k∈[K]

µk = µa? .

The goal of the agent is to maximize her cumulative expected reward E[∑T
t=1 µat ] where T is the

length of the game; equivalently, she tries to minimize her expected cumulative pseudo-regret
which is the difference in expectation between the payoff gathered by playing the optimal arm
a? at each round and the cumulative rewards that were actually observed. Formally:

Regretπν (T ) := Tµ? − E
[
T∑

t=1
µat

]
,

By introducing the sub-optimality gaps ∆k := µ?−µk and Tk(t) := ∑t
s=1 1(as = k) the number

of times that action k was played, the regret can be re-written as:

Regretπν (T ) = µ?

K∑

k=1
E [Tk(T )]− E

[
K∑

k=1
µkTk(T )

]
=

K∑

k=1
∆kE [Tk(T )] . (1.1)

1This definition of a policy is informal to keep the discussion concise. See (Lattimore and Szepesvári, 2020,
Section 4.6) for a rigorous measure-theoretic definition of a policy.
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Figure 1.1: Illustration of the behavior of the greedy policy. The optimal arm is the first arm
since µ1 > µ2. In this case, the random realization of the rewards have led to the following
situation: at round t, the estimate µ̂1 of the best arm is smaller than the estimate µ̂2 of the
second arm. A greedy policy will therefore pick the second arm, and suffer an instantaneous
regret µ1 − µ2 > 0. The agent refines its knowledge about the second arm and the estimate
µ̂2 improves. The situation for the first arm does not change and its remains poorly estimated.
Under a greedy strategy this might never change; the first arm will possibly never be played
since µ̂1<µ2.

Broadly speaking, the goal of the agent is to follow a policy π such that the regret is sub-linear
in T . Before discussing algorithms that achieve this objective, we need to discuss the main
challenge they need to address: the exploration-exploitation dilemma.

Exploration-exploitation dilemma. The agent does not know the distributions {νk}Kk=1
and therefore is ignorant of the highest mean µ? or its associated action a?. She builds her
knowledge of the environment through the actions a1, a2, . . . she played and the rewards r2, r3, . . .
she received. She therefore faces an exploration-exploitation dilemma, which involves a careful
balance between two conflicting objectives: play the most rewarding action given her current
knowledge to minimize the instantaneous regret (exploitation) and play poorly estimated arms
to refine her knowledge and collect information that may be useful in the future (exploration).
Focusing only on exploration trivially leads to a linear regret (since it essentially involves playing
all actions uniformly) while pure exploitation can lead to the same result if the expected reward
associated with the optimal arm is poorly estimated (which would lead a greedy algorithm to
always play a sub-optimal arm and henceforth suffer linear regret). We illustrate in Fig. 1.1 this
phenomenon in the case of a two-arm bandit problem.

Lower-bounds. Before introducing algorithmic principles that address this trade-off, we can
highlight the hardness of the problem (from a learning-theoretic point of view) by recalling exist-
ing lower-bounds. The lower-bound of (Lai and Robbins, 1985) characterizes, in the asymptotic
regime, the number of suboptimal arm-pulls that any consistent policy must perform. Infor-
mally, a policy is called consistent for a class V of distributions if for any ν ∈ VK it enjoys at
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worst a logarithmic asymptotic regret. Formally, π is consistent for V if:

∀ν ∈ VK , ∀α > 0, lim
T→∞

Regretπν (T )
Tα

= 0 . (1.2)

Theorem 1.1.1 (Lai and Robbins (1985)). Let V be a class of distributions parametrized by
their means, and let π be a consistent policy for V. Then under mild conditions over V, for
every ν ∈ VK one has:

lim inf
T→∞

Regretπν (T )
log(T ) =

K∑

k=1

∆k

KL(νk||νa?)
.

where KL(νk||νa?) is the Kullback-Leibler divergence between the reward’s distributions of the kth

arm and the optimal arm.

Theorem 1.1.1 states that any consistent policy (i.e an allocation strategy satisfying Eq. (1.2))
must suffer, asymptotically, a logarithmic regret. In other words if π is asymptotically perfor-
mant on all instances ν, then it must explore enough to tell those instances appart and therefore
its regret cannot be bounded (whatever the considered instance ν). This necessary level of explo-
ration is quantified by Theorem 1.1.1: together with Eq. (1.1) it informs us that asymptotically,
each suboptimal arm must be played proportionally to log(T ) times. The exact proportion is a
function of the sub-optimality gap and the discrepancy (measured by a Kullback-Leibler diver-
gence) between the considered arm’s reward distribution and the distribution of highest mean.
To gain some intuition on this constant, let us consider the following example; for all k ∈ [K],
let νk be a Bernoulli distribution of mean µk. In such a case we have that KL(νk||νa?) ≈ ∆2

k

and the number of sub-optimal pulls prescribed by Theorem 1.1.1 becomes 1/∆k. Therefore
the smaller (resp. higher) the sub-optimal gap, the more (resp. less) a sub-optimal arm must
be played. This makes intuitive sense; if a sub-optimal arm k is associated to a distribution νk
which mean µk is close to µ?, then it must be played quite often so the agent can actually tell
them appart with high confidence, and vice-versa.
It is natural to wonder how such conclusions transfer to the finite-time setting and without

restricting the considered class of policies. It is actually possible to exhibit collections of hard
MAB instances, on which no algorithm can achieve uniformly good finite-time performance.
Such constructions are at the origins of problem-independent lower-bounds, which essentially
quantify the worst-case hardness of the MAB problem. We recall here a lower-bound appearing
in Lattimore and Szepesvári (2020) which essentially shows that for any policy we can find a
Gaussian MAB problem such that the regret of the considered policy is Ω(

√
KT ).

Theorem 1.1.2 (Theorem 15.2 of Lattimore and Szepesvári (2020)). Let T ≥ K and V be the
class of normal distributions with unit variance. For any policy π it exists ν ∈ VK such that:

Regretπν (T ) ≥ c
√
KT

where c>0 is a universal constant - i.e independent of the problem.

Such results set the bar for what one can expect in the worst-case of the strategies designed
to solve the MAB problem. A worthwhile goal is therefore to design policies which worst-case
performances effectively matches this lower-bound. This is the topic of the next section, which
describes the optimism-in-face-of uncertainty principle, a popular heuristic at the root of many
strategies fulfilling this goal.
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Figure 1.2: Illustration of the OFU principle, in opposition with the behavior of the greedy
strategy as illustrated in Fig. 1.1. The errors bars represent the confidence intervals for the
arms. At round t the OFU principle prescribes playing action 2 as the confidence intervals
suggests that it could be the most rewarding action. After observing the associated reward,
the estimation of the arm’s expected reward improves and the width of the confidence interval
decreases. At round t + 1 the OFU principles now recommends arm 1 which is the optimal
arm. Compared to the greedy policy, optimism allows to balance the exploration-exploitation
trade-off and ensures small cumulative regret.

1.1.2 Optimism in face of uncertainty

Intuition. The main idea behind the optimism-in-face-of uncertainty (OFU) principle is to
play greedily according to the most optimistic of plausible environments. More precisely, it
prescribes considering all the environments which are coherent with the rewards observed so far
(i.e that are plausible) and play the best action of the environment which has the best possible
payoff. By doing so, one either selects the best action of the true environment (which comes at
zero regret) or select a sub-optimal action that carries valuable information for the future. In the
MAB setting the set of plausible environments can be quantified through confidence intervals
Bt
k for the true means {µk}Kk=1, i.e such that at each round t ≥ 1:

∀k ∈ [K], µk ∈ Bt
k with high probability.

An optimistic algorithm plays the action which has the highest upper confidence bound:

play at = arg max
k∈[K]

sup
µ̃k∈Btk

µ̃k . (1.3)

Naturally the width of the confidence intervals {Bt
k}Kk=1 must gracefully degrades in time so the

set of plausible environments eventually concentrates around the true environment - this is the
topic of the following paragraph. We illustrate the OFU principle in Fig. 1.2.

Upper Confidence Bounds algorithms. Algorithms that plan according to the OFU prin-
ciple have usually been called Upper-Confidence Bounds (UCB) algorithms. This principle has
bred a myriad of algorithms which differ conceptually by the confidence interval they rely on
to quantify the set of plausible environments. A short (far from exhaustive) list includes: UCB1
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Algorithm 1 UCB1 (Auer et al., 2002)
input: Arms{1, ..,K}, failure level δ.
for k ∈ [K] do
Play arm k, observe reward. . initialization

end for
Update empirical means.
for t ∈ [K + 1, T ] do
Play the arm at with highest upper-confidence bound (see Eq. (1.4)). . planning
Observe reward rt+1, update empirical means and confident upper-bounds. . learning

end for

(Auer et al., 2002), UCB-v (Audibert et al., 2009) and KL-UCB (Cappé et al., 2013). We describe
here the UCB1 of Auer et al. (2002) for the sake of illustration and refer the interested reader to
(Lattimore and Szepesvári, 2020, Part II) for an in-depth introduction and discussion on UCB
algorithms for the MAB problem. To ease the exposition we will assume that the distributions
{νk}k∈[K] all have support in [0, 1] so the associated random variables are all 1/2-sub-Gaussian
(see Definition A.2 and Lemma A.3). At any round t and for a given confidence level δ ∈ (0, 1]
the UCB algorithm follows the policy:

play at = arg max
k∈[K]

{
µ̂tk +

√
log(1/δ)
2Tk(t−1)

}
, (1.4)

where µ̂tk = ∑t−1
s=1 1(as = k)rs+1/Tk(t− 1) is the empirical mean of µk. This is motivated by the

Chernoff-Hoeffding concentration inequality (see Lemma A.4) which states that (up to the fact
that Tk(t−1) is a random variable, which will require a slight refinement - e.g an union bound):

P
(
µk ≤ µ̂tk +

√
log(1/δ)
2Tk(t−1)

)
≤ 1− δ for all k ∈ [K] .

The exploration bonus over the empirical mean that appears in Eq. (1.4) can therefore be written
as the upper-bound of a confidence interval. This feature is at the heart of the proof’s behind
the theoretical guarantees of UCB1.

Theorem 1.1.3 (Regret of UCB1, Theorems 7.1 and 7.2 of (Lattimore and Szepesvári, 2020)).
Let V be the family of distributions with support in [0, 1]. Given any horizon T , setting δ = 1/T 2

ensures that for a given bandit instance ν ∈ VK the regret of UCB1 satisfies:

Regretν(T ) ≤ 3
K∑

k=1
∆k +

∑

k:∆k 6=0

16 log(T )
∆k

.

Furthermore, the worst-case regret of UCB1 satisfies;

max
ν∈VK

Regretν(T ) = O
(√

KT log(T )
)
.

Note that the worst-case regret matches (up to logarithmic term) with the lower-bound of
Theorem 1.1.2. Refining the concentration bounds (e.g by relying on higher order moments of
the distribution (Audibert et al., 2009) or on its complete description (Cappé et al., 2013)) leads
to tighter confidence intervals and improved regret upper-bounds.
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1.2 Linearly parametrized bandits
From MAB to parametric bandits. From a theoretical standpoint, the main interest be-
hind the MAB framework is to provide a minimalistic framework to study and address the
exploration-exploitation dilemma. Its simplicity surely is the reason for its popularity, but
comes at a price as it leaves many questions open when it comes to more realistic sequential
decision-making problems. For instance, it is common for a practitioner to have the a-priori
knowledge that some actions are similar and will roughly have the same payoff. For instance,
a recommendation engine company knows that the appetence of a given user for different pairs
of shoes is sensibly the same, but is independent of its interest in plasma screens. In the MAB
setting that we have described so far the knowledge of interrelated payoffs is discarded and the
arms are all treated independently. Intuitively this feels like a miss; allowing to transfer the
information brought by playing an arm to similar arms should ease the exploration-exploitation
task as not every arm needs to be independently explored. This calls for bandit settings with
additional structure and in particular motivates the study of the so-called parametric bandits. In
this setting actions are represented by vectors of a given metric space E, with the idea that the
closer two actions are, the more similar their reward. Each arm’s reward distribution is assumed
to be tied to a shared parameter θ? ∈ Θ and dictated by a common function f : E × Θ → R.
Formally;

∀a ∈ A, E [r |a] = f(a, θ?) .

The function f is assumed known by the agent while θ? is the unknown quantity of interest.
The same way a MAB algorithm ultimately tries to estimate the vector of means {µk}k∈[K], a
parametric bandit algorithm will try to learn θ? while balancing exploration and exploitation.
For this reason it is reasonable to study cases where estimation or learning is possible, which
typically restricts the class of function of the reward function f . A prototypical instance of such
a model is the linear bandit (LB) where f is assumed to be the scalar product over E:

∀a ∈ A, E [r |a] = aTθ? .

The linear bandit has been extensively studied in the literature (e.g Dani et al., 2008; Rus-
mevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Abeille and Lazaric, 2017, and
references therein). It compactly sums-up some key challenges of parametric bandits and is the
topic of the rest of this section.
Remark 1.2.1 (Other reasons to study parametric bandits). We motivated the linear bandit
setting by the need to share information across similar arms. It also allows to incorporate
extraneous contextual information which may impact the payoff of the actions (e.g some user
features in a recommendation task). Indeed, the problem remains fundamentally the same if:

∀a ∈ A, ∀x ∈ X , E [r |a, x] = φ(x, a)Tθ? .

where X denotes the space of possible contextual information and φ a given joint feature map.
Finally we will see that parametric bandits allow to handle infinite ( e.g continuous) actions sets
which is not possible under a MAB description.
Remark 1.2.2 (MAB as a parametric bandit). The MAB setting is a special case of the more
general parametric setting. Indeed, if A lies on an orthogonal basis of some RK , the associated
LB problem is actually a K-arm MAB with mean vector θ?.

1.2.1 Learning problem and algorithms

The goal of this section is to present existing work on the LB and insist on some key component
of LB algorithms (e.g confidence sets) that will be useful for the following chapters.
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Reward model. The action set A is potentially infinite yet embedded in a d-dimensional
Euclidean space. At each round t, the agent plays at ∈ A and receives a reward rt+1 such that:

rt+1 = aT
t θ? + ηt+1 , (1.5)

where θ? ∈ Rd and ηt+1 is a zero-mean noise. More precisely, let:

Ft := σ (a1, r2, a2 . . . , rt, at) ,

be the σ-field encoding all the information available before rt+1 is observed. It will be assumed
that E[ηt+1|Ft] = 0, or equivalently that E [rt+1|Ft] = aT

t θ?. The LB analysis is conducted under
the following assumption, which essentially ensures that the mean rewards are bounded.

Assumption 1.2.1 (Bounded decision set). For any a ∈ A we have ‖a‖ ≤ 1.2 Furthermore,
the unknown parameter θ? satisfies ‖θ?‖ ≤ S where S is known.

As in the MAB setting the noise η must satisfy basic distributional properties in order for
estimators to concentrate and θ? to be learnable.

Assumption 1.2.2 (Sub-Gaussian noise). Conditionally to Ft the noise ηt+1 is sub-Gaussian
with variance-proxy σ2:

∀λ ∈ R, E [exp(ληt+1)|Ft] ≤ exp
(
λ2σ2/2

)
a.s.

The cumulative pseudo-regret suffered by an agent when following a policy π writes:

Regretπθ?(T ) := Ta?(θ?)Tθ? −
T∑

t=1
aT
t θ? ,

where a?(θ?) := arg maxa∈A aTθ? denotes the optimal action.

Remark 1.2.3 (Time-varying action sets). In all generality, the action set can be time varying,
for instance to account for the contextual nature of the sequential decision-making problem at
hand. This does not change the overall message we try to highlight in this section so we will
stick to constant action sets.

Lower-bound. Before discussing algorithms for LB we first highlight the inherent hardness
of the problem by recalling the following regret lower-bound.

Theorem 1.2.1 (Theorem 24.2 of Lattimore and Szepesvári (2020)). Let d < 2T and A =
B2(0, 1). For any policy π it exists θ ∈ Rd such that:

E [Regretπθ (T )] = Ω(d
√
T ) .

Similarly to the MAB setting this lower-bound states that the worst-case regret grows at least
as fast as

√
T , and linearly with the dimension d of the problem.

2This assumption can be easily replaced by ‖a‖ ≤ A, or enforced by pre-scaling the action set.
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Sketching an optimistic approach. Similarly to the MAB setting, an important principle
is to estimate θ? based on past interactions. Provided an estimator θ̂t of θ? we obtain estimates
aTθ̂t for the mean reward of each arm a ∈ A - the ground truth being aTθ?. Mimicking the
optimistic approach for MAB we can shoot for the design of exploration bonuses εt(·) to build
upper confidence bounds for aTθ?, i.e such that:

∀a ∈ A, aTθ? ≤ aTθ̂t + εt(a) w.h.p.

Equivalently, we can ask for the exploration bonus to upper-bound the prediction error ∆t(a) =
|aT(θ? − θ̂t)| of the estimator θ̂t. In other words:

∀a ∈ A, εt(a) ≥ ∆t(a) w.h.p. (1.6)

Assuming for now that we can design such exploration bonuses, we can play greedily according
to the highest upper confidence bound:

play at ∈ arg max
a∈A

aTθ̂t + εt(a) .

This action selection mechanism ensures that Regretθ?(T ) ≤ 2∑T
t=1 εt(at) (with high probabil-

ity) which we can expect to be sub-linear if the exploration bonuses vanish fast enough. From
Eq. (1.6) we can see that such bonuses can be obtained by uniformly bounding the prediction
error of θ̂t, or equivalently by controlling the deviation of θ̂t from θ? in every direction. This
calls for the design of confidence sets for θ?.

Confidence set for LB. In the LB setting, the regularized least-square estimator is a good
candidate for the design of confidence sets for it comes with strong theoretical guarantees. It is
defined as follows:

θ̂t := arg min
θ∈Rd

{
t−1∑

s=1

(
rs+1 − aT

s θ
)2

+ λ ‖θ‖2/2
}
,

where λ > 0. It can be computed in closed form:

θ̂t = V−1
t

t−1∑

s=1
rs+1as where Vt =

t−1∑

s=1
asa

T
s + λId . (1.7)

Abbasi-Yadkori et al. (2011) proved the following confidence set for θ? based on this estimator
by leveraging the theory of self-normalized processes.

Theorem 1.2.2 (Theorem 2 of Abbasi-Yadkori et al. (2011)). Let δ ∈ (0, 1]. The set:

Et(δ) =



θ,

∥∥∥θ̂t − θ
∥∥∥

Vt

≤
√
λS + σ

√
d log

(1 + t/λ

δ

)
 . (1.8)

is an anytime confidence set for θ? at level at least 1− δ. In other words:

P
(
θ? ∈ Et(δ) for all t ≥ 1

)
≥ 1− δ .

The radius of this confidence set is O(
√
d log(t/δ)). The main challenge in proving this result

comes from the complex correlations between the rewards and the actions, as the randomness
in the reward directly impacts which arms will be played in the future. We leave a detailed
discussion behind the design and proof of this confidence set for the next chapter where we will
derive similar results for generalized linear bandits.
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Algorithm 2 OFUL (Abbasi-Yadkori et al., 2011)
input: Arms set A, regularization coefficient λ, failure level δ, norm upper-bound S.
Set V1 ← λId and θ̂1 ← 0d. . initialization
for t ∈ [1, T ] do
Play the arm at according to Eq. (1.9). . planning
Observe reward rt+1.
Update θ̂t+1 (Eq. (1.7)) and the confidence set Et+1(δ) (Eq. (1.8)). . learning

end for

An optimal algorithm. Abbasi-Yadkori et al. (2011) leverage this confidence set to build
OFUL, an optimistic algorithm for the LB problem. The rationale remains the same as for MAB,
that is play the most rewarding action for the most optimistic environment:

play at ∈ arg max
a∈A

max
θ∈Et(δ)

aTθ . (1.9)

Remark 1.2.4 (Parameter-search vs. exploration bonus). The strategy followed by OFUL might
appear dissonant with the exploration bonus approach that we discussed to motivate the need for
a confidence set for θ?. Indeed, OFUL enforces optimism via parameter-search over the confidence
set Et(δ). In the linear case, the two approaches are actually strictly equivalent, as one can show
that the action selection process of OFUL can be rewritten as:

play at ∈ arg max
a∈A

aTθ̂t + εt(a) .

where εt(a) = βt(δ) ‖a‖V−1
t
. The function βt(δ) corresponds to the radius of the confidence set

from Theorem 1.2.2. This equivalence is classical, and is reminiscent of the fact that a confidence
set for θ? directly induces high-probability bounds on the prediction error ∆t of any estimator in
that set. This distinction between parameter-search and exploration bonus will be important in
the next chapter; we shall see that they are no longer equivalent for non-linear reward models
and induce important algorithmic distinctions.

The OFUL algorithm (pseudo-code is provided in Algorithm 2) matches the lower-bound of The-
orem 1.2.1 up to logarithmic factors and is therefore (almost) minimax-optimal.

Theorem 1.2.3 (Theorem 3 of Abbasi-Yadkori et al. (2011)). With probability at least 1 − δ
the regret of OFUL satisfies:

Regretθ?(T ) = O
(
d
√
T log(T/δ)

)
.

The cardinality of the action set |A| no longer appears in the regret bound. By learning directly
a shared parameter, the LB approach allows to handle a large (potentially infinite) number of
arms, only at the price of the dimension d of the problem. Furthermore, for well-structured
infinite arm-sets (e.g the unit ball) the planning program of Eq. (1.9) can be efficiently solved.
This concludes the introduction of the main ingredients to analyze the LB setting, which we

will use as reference in this part of the dissertation. There exist many refinements and extensions
to the vanilla LB problem (e.g sparse LB); we won’t cover them here for the sake of conciseness
but refer the interested reader to the excellent book of (Lattimore and Szepesvári, 2020, Part
V) for an in-depth discussion of the LB problem and existing algorithms.
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1.2.2 Limits of the linear model

The previous section attests that the LB is a compact yet powerful parametric bandit framework
as it allows to neatly isolate the main challenges that come with parametrization. In particular,
the design of appropriate confidence sets have emerged as essential in the design of optimal
algorithms. From a learning-theoretic stand-point, an important message carried by the LB is
that provided a learnable reward structure the parametric bandit is not fundamentally harder
than MAB (similar regret rates are achieved). This is an encouraging conclusion as parametric
bandits are more general and allow to address more challenging sequential problems.
Nonetheless, and because of its relative simplicity, the LB problem still leaves open some

important theoretical questions. For instance, can we expect the same kind of guarantees with
richer reward models? In particular, how does non-linearity impact the results obtained under
linear parametrization? Precisely answering this question stands as an important step towards
a better understanding of complex, non-linear environments which are ubiquitous in real-world
situations. This last remark leads us to another important downside of the LB setting, this time
from a practical point of view. Indeed, the reward model established in Eq. (1.5) prescribes
continuous rewards. It therefore excludes cases of great practical importance such as binary or
categorical rewards. For instance, binary rewards are omnipresent in virtually any web-related
applications of bandits where rewards are typically measured by clicks or sales.
As we shall see in the following section such limitations can be addressed altogether by study-

ing the so-called Generalized Linear Bandits (GLBs). This framework stands as a minimalistic
non-linear extension to the LB setting; it is close enough to the LB setting that we can use the
same fundamental tools (at least conceptually) and observe how their results are affected by
non-linearity. The GLB setting therefore allows to neatly single out the potential issues raised
by non-linearity and its effects on the exploration-exploitation trade-of. Finally, the GLB family
encloses a diverse range of reward distributions - e.g binary or categorical. Designing efficient
GLB algorithms is hence important from a practical standpoint, in order to handle the many
real-world situations where the LB is critically misspecified.

1.3 Beyond linearity: Generalized Linear Bandits

The GLB framework was originally introduced and studied by Filippi et al. (2010); it generalizes
the LB framework by adding a single non-linear activation µ on top of the scalar product:

∀a ∈ A, E [r|a] = µ(aTθ?) .

The goal of this section is to provide a thorough definition of the GLB learning problem. We will
review related work in details and highlight some important limitations of existing approaches
which motivated our contributions on this topic.

Exponential distributions and generalized linear models. To properly introduce the
learning problem we first discuss the idea behind generalized linear models (GLMs) (McCullagh
and Nelder, 1989). Let r be some response variable to some feature vector x. Its conditional
distribution is said to belong to the canonical exponential family if its density p(·|x) (w.r.t to a
given reference measure) is of the form:

p(r|x) ∝ exp (rβx − b(βx)) ,

up to normalization. In the above definition, βx is a scalar parameter (indexed by the feature
vector x) and b a real-valued univariate function assumed to be twice continuously differentiable.
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Standard computations yields that:

E [r|x] = ḃ(βx) and Var (r|x) = b̈(βx) . (1.10)

The function µ := ḃ is commonly referred to as the inverse link function; from the above identity,
we get that b is strictly convex and equivalently that µ it is a strictly increasing function. The
canonical exponential distribution family contains, for instance, the Gaussian (with known vari-
ance) and Exponential distributions (with Lebesgue reference measure) as well as the Bernoulli
and Poisson distributions (with the counting reference measure). In a GLM it is assumed that
the {βx}x share a common linear structure:

βx = xTθ? where θ? ∈ Rd .

1.3.1 Learning problem

Reward model. The GLB framework of Filippi et al. (2010) imposes rewards to be described
by a GLM. Strictly speaking it does not require the rewards distribution to belong to a canonical
exponential family but only that the first moment condition in Eq. (1.10) is checked. The reward
model can therefore be described by the following statement; when at round t the agent plays
an arm at it receives the reward rt+1 which satisfies:

E [rt+1|Ft] = µ(aT
t θ?) . (1.11)

The function µ is strictly increasing and continuously differentiable. As for the LB some bound-
edness assumptions (over the arm-set, the unknown parameter and the noise) are made to ensure
the soundness of the learning problem.

Assumption 1.3.1 (Bounded decision set). For any a ∈ A we have ‖a‖ ≤ 1. Furthermore, the
unknown parameter θ? satisfies ‖θ?‖ ≤ S where S is known.

Assumption 1.3.2 (Bounded noise). There exist σ > 0 such that for all t ≥ 1:
∣∣∣rt+1 − µ(aT

t θ?)
∣∣∣ ≤ σ a.s .

Assumption 1.3.1 leads us to define the set Θ := Bd(0d, S) which will be referred to as the
admissible parameter set.

Regret. The cumulative pseudo-regret incurred when following a policy π writes:

Regretπθ?(T ) = Tµ(a?(θ?)Tθ?)−
T∑

t=1
µ(aT

t θ?) ,

where a?(θ?) = arg maxa∈A µ(aTθ?). Note that the function µ being strictly increasing this can
be simplified to match the definition of the optimal arm for LB, i.e a?(θ?) = arg maxa∈A aTθ?.

Illustration: the Logistic Bandit problem. Over the many bandit problems covered by
the GLB framework surely one of the most interesting (at least from a practical standpoint)
is the Logistic Bandit (LogB). The LogB will be our red thread throughout this part of the
dissertation and we will extensively use it to illustrate discussions and findings. Paragraphs
dedicated to the LogB are indicated by the ( ) symbol - see below.
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Figure 1.3: Graphical representation of two-dimensional GLBs; (left) the Logistic Bandit. The
reward signal displays flat tails on the boundaries of the decision set. (right) the Poisson bandit.
The reward signal has a flat left (xTθ? < 0) tail and an exploding right tail.

( ) The LogB arises when rewards are binary and sampled according to a Bernoulli distri-
bution with linear log-odds. Formally, it allows to tackle the case where the reward obtained
after playing an arm a is drawn according to a Bernoulli distribution with mean µ(aTθ?) where
µ is the logistic function: µ(z) = (1 + exp(−z))−1. In other words:

rt+1 ∼ Bernoulli
(
µ(aT

t θ?)
)

We provide a visual illustration of a two-dimensional LogB instance in Fig. 1.3a. The practical
advantage of this model is to handle in a principled way binary feedback, which is ubiquitous in
real-world problems (e.g click/no-click in computational advertisement, recovery/no-recovery
in clinical trials, and generally any kind of success/failure feedback). From a theoretic per-
spective the LogB captures the many challenges brought by non-linearity in GLBs, and as we
shall see in the following chapters is the GLB for which our analysis brings the most distinctive
learning-theoretic message compared to previous works. For this reason most of our results
and findings that hold for self-concordant GLBs will be illustrated through the LogB case.

Remark 1.3.1 (The Poisson Bandit: another important model). The Poisson Bandit concerns
the situation where the reward is drawn according to a Poisson distribution with mean exp(aTθ?).
In this case the inverse link function is µ(z) = exp(z). The main difference with the LogB is that
the Poisson Bandit exhibit both flat and exploding tails (cf Fig. 1.3b) which will lead to sensibly
different learning-theoretic conclusions.

1.3.2 Quantifying non-linearity.

As anticipated in previous sections one of the main motivation to study GLBs is to understand
and address the potential issues raised by non-linearity. However, the nature and level of the
non-linearity differs across reward models (cf. Fig. 1.3), and can even sensibly differs across
several instances of the same model (cf. Fig. 1.4). The level of non-linearity is therefore highly
problem-dependent; to compactly evaluate its impact on different bandit instances it is desirable
to resort to non-linearity metrics which measures the “distance” of a given GLB problem to
its LB counterpart (the linear model serves as a reference point when evaluating the effects of
non-linearity).
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Figure 1.4: Illustration of the problem-dependent nature of non-linearity on two LogB problems.
The level of non-linearity is tied to the regimes of the link function µ covered by the set {aTθ?, a ∈
A}. For both problems we have A = Bd(0d, 1); if ‖θ?‖ is small (left) for all actions aTθ? lie close
to the origin where the logistic function is almost linear. When ‖θ?‖ is large (right) many actions
lay in flat regions of the logistic function; the resulting reward signal is highly non-linear.

Reward sensitivity. The GLB framework allows for such a measure through the analysis of
the local sensitivity of the reward signal across the arm set. Formally, for a given link function
µ let us define the minimal and maximum effective sensitivity of the reward model as:

`µ(A, θ?) := min
a∈A

µ̇(aTθ?) and Lµ(A, θ?) := max
a∈A

µ̇(aTθ?) .

The link function µ being strictly increasing their ratio is well-defined;

κµ(A, θ?) := Lµ(A, θ?)/`µ(A, θ?) ≥ 1 .

This last quantity compactly captures the discrepancy between the GLB model attached to the
tuple (µ,A, θ?) and its LB counterpart (note that if µ(z) = z which is the linear case we have
κµ(A, θ?) ≡ 1). Indeed the more non-linear the reward model, the greater the mismatch between
Lµ and `µ and the greater κµ.3 For this reason, we informally identify it as a measure of non-
linearity. We illustrate this in the following paragraph regarding the LogB case, for which such
relationship between the model’s level of non-linearity and κµ is particularly remarkable.

( ) In the LogB case, the maximum sensitivity Lµ is bounded by the Lipschitz constant of the
logistic function; in most cases of interests Lµ = 1/4 and hence κµ = 4/`µ. The main quantity of
interest is therefore the minimum sensitivity `µ which quantifies the flatness of the reward signal
near the boundaries of the arm set. The tail of the logistic function being exponentially flat (as
illustrated in Fig. 1.5) the ratio κµ is often very large, even under reasonable configurations.
Indeed, from the definition of the sigmoid function, one easily obtains that:

1/`µ ≥ exp
(

max
a∈A
|aTθ?|

)
.

The quantity aTθ? is directly tied to the mean reward obtained when playing a. This lower
bound stresses that κµ will be exponentially large as soon as there exists bad (resp. good)
arms a associated with a low (resp. high) probability of receiving a positive reward.

3We drop the dependency w.r.t θ? and A whenever obvious from context in order to reduce clutter.
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Figure 1.5: Illustration of `µ, Lµ and κµ for a LogB with A = Bd(0, 1). The larger ‖θ?‖, the
flatter the tails, the higher the non-linearity level and the larger the effective sensitivity ratio
κµ. This growth is exponential as κµ ≈ exp(‖θ?‖).

Computable alternatives. The minimum and maximum effective sensitivities `µ and Lµ
directly depend on the unknown parameter θ? - and therefore so does their ratio κµ. They
therefore cannot in all generality be computed, but one can obtain proxys thanks to Assump-
tion 1.3.1. Indeed, it ensures that θ? ∈ Θ where Θ = Bd(0, S) is the set of admissible parameters.
One can therefore compute the worst-case reward sensitivities over all potential reward signals:

¯̀
µ(A,Θ) = min

a∈A,θ∈Θ
µ̇(aTθ) and L̄µ(A,Θ) = max

a∈A,θ∈Θ
µ̇(aTθ) , (1.12)

as well as the associated ratio:

κ̄µ(A,Θ) = ¯̀
µ(A,Θ)/L̄µ(A,Θ) . (1.13)

We have the following trivial inequalities between the effective and worst-case sensitivities; 4

¯̀
µ ≤ `µ, L̄µ ≥ Lµ and κ̄µ ≥ κµ .

The tightness of those quantities (w.r.t to the effective non-linearity metrics) is a function
of the true geometry (characterized by A and θ?) as well as the tightness of the inequality
‖θ?‖ ≤ S.

( ) For the LogB one has that κ̄µ ≥ exp(S), which can be significantly larger than κµ.

1.3.3 Linearization approach

We are now ready to start discussing existing work on the GLB problem. The main objective
of this section is to provide a presentation of the main conceptual ideas and technical tools
introduced by Filippi et al. (2010) in their seminal work on GLBs. The main idea behind their
approach is to linearize the reward signal of GLBs in order to resort to LB recipes. Other recent
works rely on similar mechanisms and carry the same learning-theoretic conclusions w.r.t to the
effects of non-linearity. They are briefly discussed in the end of this section.

4We drop the dependency w.r.t A and Θ whenever clear from context to reduce clutter.
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Learning and confidence set. Filippi et al. (2010) suggest to use the maximum likelihood
principle in order to estimate θ?. Formally, given the regularized log-loss (recall that b is a
primitive of the inverse link function µ):

Lt(θ) :=
t−1∑

s=1

[
b(aT

s θ)− rs+1a
T
s θ
]

+ λ ‖θ‖2 /2 ,

they compute the regularized maximum-likelihood estimator (MLE) θ̂t := arg minθ∈Rd Lt(θ).
This estimator is well-defined and unique given the strongly convex nature of the log-loss Lt
and for the ease of exposition we assume for now that the event {∀t ≥ 1, θ̂t ∈ Θ} holds. To
design an optimistic strategy one needs to design a confidence set for θ?; to this end, Filippi
et al. (2010) leverage the properties of θ̂t along with a linearization of the link function µ. Upon
differentiation of the log-loss, direct computation yields that:
t−1∑

s=1

[
rs+1 − µ(aT

s θ?)
]
as − λθ? =

t−1∑

s=1

[
µ(aT

s θ̂t)− µ(aT
s θ?)

]
as + λ(θ̂t − θ?) ,

≥
(
t−1∑

s=1
µ̇(zs)asaT

s + λId
)

(θ̂t − θ?) , (zs ∈ [aT
s θ̂t, a

T
s θ?])

thanks to an exact first-order Taylor expansion. To mirror the LB approach, one would like to
introduce the design matrix Vt = ∑t−1

s=1 asa
T
s + λ′Id in the above inequality. This is possible by

using a lower-bound of µ̇ over the set {aTθ, a ∈ A, θ ∈ Θ}; a.k.a, the minimum sensitivity ¯̀
µ.

Up to the correct choice of the regularization parameter λ′ this provides the following ordering:
t−1∑

s=1
µ̇(zs)asaT

s + λId � ¯̀
µVt .

Straight-forward algebraic manipulations yield that:
∥∥∥θ̂t − θ?

∥∥∥
Vt

≤ (1/¯̀
µ)
∥∥∥∥∥
t−1∑

s=1

[
rs+1 − µ(aT

s θ?)
]
as

∥∥∥∥∥
V−1
t

+ λS√
λ′ ¯̀µ

.

Noticing that rs+1 − µ(aT
s θ?) is a zero mean noise (conditioned on Fs) and applying the tail

inequality of (Abbasi-Yadkori et al., 2011, Theorem 1) yields a confidence set that highly resem-
bles the LB’s (see Theorem 1.3.1 below). Note this approach critically relies on lower-bounding
µ by a linear function:

|µ(aT
s θ̂t)− µ(aT

s θ?)| ≥ ¯̀
µ|aT

s (θ̂t − θ?)| .

By definition of ¯̀
µ this requires {θ̂t ∈ Θ} to hold which can not always be ensured; Filippi et al.

(2010) replace θ̂t by its “projection” θ̃t on Θ:

θ̃t = arg min
θ∈Θ

∥∥∥∥∥
t−1∑

s=1

[
µ(aT

s θ)− µ(aT
s θ̂t)

]
as + λ(θ − θ̂t)

∥∥∥∥∥
V−1
t

. (1.14)

Theorem 1.3.1. [GLB confidence set, Filippi et al. (2010)] Let δ ∈ (0, 1]. For all t ≥ 1 let
Vt = ∑t−1

s=1 asa
T
s + (λ/¯̀

µ)Id. The set:

Et(δ) :=



θ ∈ Θ,

∥∥∥θ − θ̃t
∥∥∥

Vt

≤ 2
¯̀
µ



√
λ¯̀
µS + σ

√√√√d log
(

1 + t¯̀µ/λ
δ

)



 ,

is an anytime confidence set for θ? at level at least 1− δ i.e P
(
∀t ≥ 1, θ? ∈ Et(δ)

)
≥ 1− δ.
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Algorithm 3 GLM-UCB (Filippi et al., 2010)
input: Arm set A, regularization coefficient λ, failure level δ, admissible parameter set Θ.

Compute the reward sensitivity constants ¯̀
µ, L̄µ and κ̄µ. . initialization

Set V1 ← (λ/¯̀
µ)Id, θ̂1 ← 0d and θ̃1 ← 0d.

for t ∈ [1, T ] do
Compute the exploration bonuses {εt(a)}a∈A according to Eq. (1.15).
Play the arm at according to Eq. (1.16). . planning
Observe reward rt+1.
Update the estimator θ̂t+1 and the design matrix Vt+1. . learning
Compute the θ̃t+1 the projection of the MLE on Θ (cf. Theorem 1.3.1).

end for

The radius of this confidence set is O(¯̀−1
µ

√
d log(t/δ)); it is essentially the same as in the LB

case but inflated by a factor 1/¯̀
µ (which is typically very large). Theorem 1.3.1 does not directly

appear as it in (Filippi et al., 2010); it actually brings a slight improvement to their results. It
can however be trivially extracted from their different proofs combined with (Abbasi-Yadkori
et al., 2011, Theorem 1). We provide the proof in Appendix 1.A for the sake of completeness.

Planning. In their seminal paper Filippi et al. (2010) advocate for enforcing optimism through
exploration bonuses. As we discussed in the LB case and as we shall shortly see for GLBs,
a sound design for exploration bonuses is obtained by upper-bounding the prediction error
∆t(a) := |µ(aTθ?) − µ(aTθ̃t)| (the parameter θ̃t is the projected version of θ̂t on Θ defined in
Eq. (1.14)). To this end Filippi et al. (2010) again resort to linearization, this time “by above”:

∆t(a) = |µ(aTθ?)− µ(aTθ̃t)|
≤ L̄µ|aT(θ? − θ̃t)|
≤ L̄µ ‖a‖V−1

t

∥∥∥θ? − θ̃t
∥∥∥

Vt

.

where the first inequality consists in using that fact that µ̇ is bounded by Lµ on the interval
[aTθ?, aTθ̃t], and the second is obtained thanks to Cauchy-Schwarz inequality. Leveraging the
confidence set from Theorem 1.3.1 directly gives a confident upper-bound on the prediction
error, and therefore yields a sound bonus function. Formally, for δ ∈ (0, 1] define the following
exploration bonus function:

εt(a) = 2κ̄µ ‖a‖V−1
t

(√
λ¯̀
µS + σ

√
d log

(
(1 + t¯̀µ/λ)/δ

))
(1.15)

The GLM-UCB algorithm of Filippi et al. (2010) follows the strategy:

play at = arg max
a∈A

µ(aTθ̃t) + εt(a) . (1.16)

Pseudo-code for GLM-UCB is provided in Algorithm 3. Notice the resemblance of the exploration
bonus function with its linear counterpart (see Remark 1.2.4). This GLB bonus essentially
inflates the LB one by a factor κ̄µ; it is significantly larger for highly non-linear reward models.
This is a direct consequence of the linearization approach followed by Filippi et al. (2010).

Regret bound. The proof for the regret upper-bound of GLM-UCB closely follows the LB
analysis and yields a similar result. The following bound can easily be obtained by coupling
the proof of (Filippi et al., 2010, Theorem 2) with Theorem 1.3.1. It shaves of a

√
log(T )

multiplicative term from the initial regret guarantee of GLM-UCB.
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Theorem 1.3.2 (Regret of GLM-UCB, Theorem 2 of Filippi et al. (2010)). With probability at
least 1− δ the regret of GLM-UCB satisfies:

Regretθ?(T ) = O
(
κ̄µd
√
T log(T/δ)

)
.

The regret of GLM-UCB therefore grows at the same rate (w.r.t T and d) as the regret of OFUL on
the LB problem. This is expected, given the similar structure between GLBs and LB and the
fact that GLM-UCB employs the same recipes as the OFUL algorithm. Notice however the presence
of the problem-dependent constant κ̄µ in the regret upper-bound of Theorem 1.3.2; behind this
seemingly innocent dependency lies the main interest of the GLB study. Indeed, the level of
non-linearity is immediately present in the regret bound and allows for clear-cut interpretations
regarding the effects of non-linearity on the exploration-exploitation trade-off. We will discuss
this learning-theoretic interpretation for GLM-UCB in the following section.

Similar related work. Similar regret guarantees where proven to be achievable by random-
ized algorithms (Abeille and Lazaric, 2017; Kveton et al., 2020). In a parallel line of work,
Zhang et al. (2016); Jun et al. (2017) focused on improving the efficiency of GLM-UCB (which
requires expensive batch computations to compute the maximum-likelihood estimator θ̂t) and
managed to design fully online algorithms while retaining the same regret guarantees. Li et al.
(2017) proposed a modified version of GLM-UCB that enjoys a smaller dependency w.r.t to the
dimension d when the number of available arms at each round is finite and small. All of these
approaches rely at some point on the linearization approach of Filippi et al. (2010); as a result,
their regret upper-bounds all display the same multiplicative dependency w.r.t κ̄µ.

1.3.4 Limitations and challenges

Some important limitations. The effect of non-linearity is directly perceptible in GLM-UCB’s
regret bound through κ̄µ, which quantifies the reward signal’s level of non-linearity. In that sense,
the regret bounds depend in an “unpleasant manner on the form of the link function of the GLM,
and it seems there may be significant room for improvement” (Lattimore and Szepesvári, 2020,
Section 19.4.5). Indeed, from a theoretical perspective the regret of GLM-UCB being proportional
to κ̄µ suggests that non-linearity makes the GLB problem harder : the more non-linear the
reward signal, the larger κ̄µ and the larger the regret. This indicates that either the current
analyses fail to handle the regime where the reward function is significantly non-linear (which
was the primary purpose of extending LB to GLBs) or that the problem is fundamentally hard
(which could be confirmed by an adequate lower-bound). From a practical perspective, the
typical scaling of κ̄µ (e.g exponential for Logistic and Poisson bandits) dramatically narrows
down the class of problems that existing algorithms can efficiently address. We emphasize that
this conclusion is not an artifact of a potentially loose regret analysis; existing GLB algorithms
are over-exploratory by design as their exploration bonus is explicitly inflated by κ̄µ.

( ) On the LogB problem the regret of GLM-UCB satisfies Regretθ?(T ) = Õ
(
eSd
√
T
)
.

Yet some hope exists. By resorting to an asymptotic argument Filippi et al. (2010) conjec-
tured that their confidence set (Theorem 1.3.1) could be deflated by a factor

√
κ̄µ, which would

naturally shave off the regret from the same amount. Furthermore, a strong signal suggesting
that GLM-UCB is indeed sub-optimal came from the Bayesian analysis of the LogB problem by
Dong et al. (2019). They showed that under some configurations of A the Bayesian regret of
the Thompson Sampling algorithm is independent of κ̄µ. We are interested in frequentist regret
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A

a1
a?

a2

θ?

Arm Rewards ∆
a? (1,1,1,1,1,1,1,1,1,1) 0
a1 (1,1,1,1,1,1,1,0,1,1) 0.01
a2 (1,1,1,0,1,1,1,1,1,1) 0.01

Mean reward signal
Plausible parameter set

0.25

0.5

0.75

µ(aTθ?)

Figure 1.6: ( ) An illustration of the information/regret tension on a LogB problem. The
three arms a?, a1 and a2 have each been played 10 times. All lie in the flat right tail of the
reward signal; they have extremely similar expected rewards and small conditional variance
(cf. the second order condition of Eq. (1.11)). When pulled they almost always yield the same
reward (here 1). It is particularly hard for a learning algorithm to identify with high confidence
the best arm. Similarly, closely estimating θ? in this direction is hard since the arms hold
little discriminative information about the parameters that could have generated the observed
rewards. That being said, playing the arms a2 and a3 is not that harmful in terms of regret
since their small sub-optimality gaps ∆ are small. This tension between information and regret
is proper to GLBs and absent in the LB setting.

guarantees, which are known to be stronger than Bayesian ones - Bayesian regret upper-bounds
do not imply (in general) frequentist regret upper-bounds. The result of Dong et al. (2019)
nonetheless suggests that there is room for improvement in the frequentist analysis of GLBs.

Global vs. local control of the link function. We emphasized earlier that a salient dis-
tinction of GLBs is the shifting reward sensitivity, which varies across the arm set (e.g flat vs.
exploding behaviors). Each regime of reward sensitivity is tied to its own intrinsic informa-
tion/regret balance. For instance, flat areas of the reward signal are characterized by their small
informative nature. Indeed the arms laying in such flat zones have extremely similar rewards;
this make the estimation of θ? in the directions supporting these areas hard. This however
might not be necessarily dramatic for the regret as the gap between arms in flat zones is small.
We illustrate this high-level idea for the LogB in Fig. 1.6. The reverse reasoning holds for re-
gion of high sensitivity; estimation is then easy but small estimation errors can still contribute
largely to the regret. Unfortunately a global linearization approach like the one followed to
design GLM-UCB takes the worst of both cases and ignores the fact that information and regret
often balance each other. Technically speaking, it uses both uniform upper (L̄µ) and lower (¯̀µ)
bounds for the derivative of the link function. Because they are not attained at the same point,
at least one of them is loose. Alleviating the dependency in κ̄µ thus calls for an analysis and for
algorithms that better handle the non-linearity of the reward signal, switching from a global to
a local treatment. As previously mentioned, a thorough control on the prediction error ∆t is key
to the tight design of an optimistic algorithm. The challenge therefore resides in finely handling
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the locality when controlling the prediction error, which also requires improved confidence sets.

1.4 Our approach: a self-concordant analysis for GLBs.
We bring forward a refined non-linear treatment for a wide class of GLBs known as self-
concordant. Before discussing our mains results we start by defining the self-concordance prop-
erty for GLBs, which allows for a local treatment of the reward signal.

1.4.1 Setting: self-concordant GLBs

We closely follow the GLB setting laid out in Section 1.3.1 but we make an additional assumption
compared to previous work. We consider a slightly restricted class of GLBs known as self-
concordant. Their inverse link function satisfies the following smoothness property.

Assumption 1.4.1 (Generalized self-concordance). The inverse link function is twice continu-
ously differentiable and satisfies |µ̈| ≤ µ̇.

This assumption is mild and the class of self-concordant GLBs is wide; it contains for instance
the important Logistic and Poisson bandits. Other important instances of this class are the Bi-
nomial and Multinomial bandits. Actually, under Assumption 1.3.1 all GLBs are self-concordant
however with a different self-concordance constant: |µ̈| ≤ aµ̇. The constant a impacts our regret
bounds only linearly so we restrict a = 1 to reduce clutter.

Remark 1.4.1 (On the self-concordant property). An alternative definition for a self-concordant
GLB requires that its log-loss is a generalized self-concordant function in the sense of Bach
(2010). This is equivalent to the derivative control presented in Assumption 1.4.1.

In addition to the self-concordance property we will also restrict our study to GLBs that stray a
little closer to exponential families. More precisely we ask for both the first and second moment
conditions of Eq. (1.10) to be checked - previous work only required the first moment condition
to be satisfied. Formally, the reward rt+1 obtained after playing at is such that:

E [rt+1|Ft] = µ(aT
t θ?) , (1.17)

and Var [rt+1|Ft] = µ̇(aT
t θ?) . (1.18)

This additional property is of great importance to the design of our confidence sets as it ties
the variance of the rewards to the non-linearity of the link function. It is naturally checked by
GLBs that are directly derived from an exponential family, which is the case for most GLBs of
interest and of all the GLBs that we have listed so far (Logistic, Poisson, Multinomial, ..).

1.4.2 Brief summary of contributions

Here we present a very brief summary of our contributions on the GLB problem. The ambition
is not to provide precise results but rather to give the high-level flavor of the different chapters.
In Chapter 2 we present our main technical contribution: a new Bernstein-like tail-inequality
for self-normalized martingales which yields improved confidence sets for any GLB satisfying
Eq. (1.18). A salient feature of those confidence sets is their sensitivity to the effective level
of non-linearity encoded by µ, θ? and A. They improve over the LB-inspired set presented
above and as a by-product, give the first formal proof of the conjecture of Filippi et al. (2010)
in the finite-time, adaptive-design case. In Chapter 3 we apply the improved confidence sets
to the design of new optimistic algorithms for self-concordant GLBs. The associated regret
bounds show refined problem-dependent scalings which tells a much more nuanced story about
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Approach Regret Upper-Bound Regret Lower-Bound
Linearization analysis
(Filippi et al., 2010),

(Abeille and Lazaric, 2017),
(Li et al., 2017), ..

Õ
(
eS
√
T
)

Ω
(
e−‖θ?‖/2

√
T
)

(Chapter 3)
Self-concordant analysis

(Chapter 3) Õ
(
e−‖θ?‖/2

√
T
)

Table 1.1: ( ) Illustration of our results on the Logistic Bandit with action set A = Bd(0, 1).
Recall that ‖θ?‖ ≤ S. Our analysis yields tight regret bounds with improved problem-dependent
rates and and exponential acceleration over previous approach. Furthermore, it shows that for
the LogB the larger ‖θ?‖ (i.e the more non-linear the reward signal) the smaller the regret.

the effects of non-linearity. The most striking difference occurs for the LogB where our analysis
shows that some highly non-linear problems are in fact easier to solve than their linear counter-
parts. Learning-theoretic considerations apart, our algorithms enjoy regret bounds that display
critically reduced dependency w.r.t the problem-dependent constant κ̄µ. For the Logistic and
Poisson bandit, this lead to an exponential acceleration over GLM-UCB and related algorithms -
we illustrate this in Table 1.1 for the LogB. Our algorithms also come with additional desirable
qualities such as tractability (they do not require non-convex optimization routine, unlike pre-
vious algorithms). Finally, for the Logistic Bandit we show that our bounds are tight (w.r.t the
problem-dependent quantities of interest) thanks to the first problem-dependent lower-bound in
a GLB setting. We extend our findings in Chapter 4 to non-stationary settings, which comes
with additional challenges for an appropriate treatment of non-linearity.

1.4.3 Notations and first technical results

We use this section to introduce additional notation that will be used throughout the manuscript
and to provide a few technical results that are inherited from the self-concordance property.

Learning. As in previous work we will use the MLE θ̂t; a minor difference is that we will
sometimes resort to time-varying regularization - this will be indicated by the time indexing of
the regularization parameter (λt instead of λ). Recall the definition of the MLE; for t ≥ 1:

θ̂t := arg min
θ∈Rd

{
Lt(θ) :=

t−1∑

s=1

[
b(aT

s θ)− rs+1a
T
s θ
]

+ λ ‖θ‖2 /2
}
.

Recall that b is a primitive of the inverse link function µ. It is also convenient to define:

gt(θ) :=
t−1∑

s=1
µ(aT

s θ)as + λθ ,

which is such that ∇Lt|θ = gt(θ) −
∑t−1
s=1 rs+1as. Since by definition of the MLE we have

∇Lt|θ̂t = 0 this yields the concise characterization:

gt(θ̂t) =
t−1∑

s=1
rs+1as .
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Conceptually the map gt allows to characterize the on-trajectory directional prediction discrep-
ancy between two parameters since for any θ1, θ2 ∈ Rd (ignoring regularization terms):

gt(θ1)− gt(θ2) ≈
t−1∑

s=1

[
µ(aT

s θ1)− µ(aT
s θ2)

]
as .

Another important quantity is the Hessian of the log-loss:

Ht(θ) :=
t−1∑

s=1
µ̇(aT

s θ)asaT
s + λId � 0 .

Taylor expansions. A central idea when analyzing GLBs is to tightly link estimation errors
(e.g between θ̂t and θ?) to prediction errors (e.g between µ(aTθ̂t) and µ(aTθ?)). Exact Taylor
expansion is a powerful tool to achieve this; we will use it abundantly and in the following lines
we introduce useful notations to this end. Specifically, for any a ∈ A and θ1, θ2 ∈ R define:

α(a, θ1, θ2) :=
∫ 1

v=0
µ̇
(
aTθ1 + vaT(θ2 − θ1)

)
dv , (1.19)

α̃(a, θ1, θ2) :=
∫ 1

v=0
(1− v)µ̇

(
aTθ1 + vaT(θ2 − θ1)

)
dv , (1.20)

so that we have the following identities (recall that ḃ = µ):

µ(aTθ2)− µ(aTθ1) = α(a, θ1, θ2)aT(θ2 − θ1) ,
b(aTθ2)− b(aTθ1) = µ(aTθ1)aT(θ2 − θ1) + α̃(a, θ1, θ2)(aT(θ2 − θ1))2 .

This allows use to link estimation errors to measurable on-trajectory metrics such as the map
gt or the log-loss itself. Indeed denoting:

Gt(θ1, θ2) :=
t−1∑

s=1
α(as, θ1, θ2)asaT

s + λId � 0 ,

G̃t(θ1, θ2) :=
t−1∑

s=1
α̃(as, θ1, θ2)asaT

s + λId � 0 ,

simple Taylor expansions allow to translate deviation in gt or Lt to deviation in parameters,
under suitable metrics:

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2) , (1.21)
Lt(θ1)− Lt(θ2) =∇Lt|Tθ2 (θ1 − θ2) + (θ1 − θ2)TG̃t(θ1, θ2)(θ1 − θ2) . (1.22)

Important inequalities and self-concordant control. The matrix Gt (resp. G̃t) therefore
allows to seamlessly switch from parameter deviations to measurable on-trajectory errors through
gt (resp. Lt) and vice-versa. In particular, Gt(θ, θ?) is the metric produced when measuring
“distance” between θ and θ? through the cumulative prediction error gt(θ)− gt(θ?). It induces a
particular geometry of the parameter space; precisely characterizing it is central to switch from
deviations in parameter to prediction errors. This geometry is however unknown (it depends
on θ?) and particularly cumbersome to describe, so we must find a way to approximate it.
Conceptually the linearization approach of Filippi et al. (2010) “flattens” the manifold generated
by Gt(θ?, θ) as it links the latter to the design matrix Vt = ∑t−1

s=1 asa
T
s + (λ/¯̀

µ)Id - which no
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longer depends on θ nor θ?. More precisely, the linearization approach resorts to the following
set of inequalities. For all a ∈ A and θ1, θ2 ∈ Θ:

α(a, θ1, θ2) ≥ ¯̀
µ ,

which translates into the following matrix inequality:

Gt(θ1, θ2) � ¯̀
µVt for all θ1, θ2 ∈ Θ . (1.23)

The self-concordance property allows for a finer approximation of the prediction error geometry,
aware of the effective sensitivity of the reward signal. We provide here some of the central
inequalities that will be used throughout the manuscript. They are inspired from the study of
Newton’s method for logistic regression by Bach (2010). The technical details of the proof are
deferred to Appendix 1.B.

Proposition 1.4.1 (Self-concordance control). Under Assumption 1.4.1 we have the following
list of inequalities. Let a ∈ A and θ1, θ2 ∈ Rd. Then:

α(a, θ1, θ2) ≥ µ̇(aTθ)
1 + |aT(θ1 − θ2)| for any θ ∈ {θ1, θ2} , (1.24)

≥ µ̇(aTθ)
1 + 2S when θ1, θ2 ∈ Θ . (1.25)

Similar results holds for α̃:

α̃(a, θ1, θ2) ≥ µ̇(aTθ1)
2 + |aT(θ1 − θ2)| , (1.26)

≥ µ̇(aTθ)
2 + 2S when θ1, θ2 ∈ Θ . (1.27)

This results into the following matrix inequalities; for any θ1, θ2 ∈ Θ:

Gt(θ1, θ2) � (1 + 2S)−1Ht(θ) for any θ ∈ {θ1, θ2} , (1.28)
G̃t(θ1, θ2) � (2 + 2S)−1Ht(θ1) (1.29)

At first sight it might not be clear already why the above inequalities are stronger than the
uniform bound of Eq. (1.23). Without going into too much details it namely allows (for instance)
to link the cumulative prediction error gt(θ̂t) − gt(θ?) and the deviation in parameter space
through the Hessian matrix Ht(θ?). The metric ‖·‖Ht(θ?) directly depends on to the effective
reward sensitivity and is the right concentration metric in GLBs. Proving this last statement is
the whole point of the following chapter.



Appendix
Appendix 1.A LB-inspired confidence set
In this section we provide a proof for Theorem 1.3.1 since this result does not appear as it in
Filippi et al. (2010). It is obtained by a straightforward application of (Abbasi-Yadkori et al.,
2011, Theorem 1) combined with the bounding strategy of (Filippi et al., 2010). We use notations
from Section 1.4.3.

Theorem 1.3.1. [GLB confidence set, Filippi et al. (2010)] Let δ ∈ (0, 1]. For all t ≥ 1 let
Vt = ∑t−1

s=1 asa
T
s + (λ/¯̀

µ)Id. The set:

Et(δ) :=



θ ∈ Θ,

∥∥∥θ − θ̃t
∥∥∥

Vt

≤ 2
¯̀
µ



√
λ¯̀
µS + σ

√√√√d log
(

1 + t¯̀µ/λ
δ

)



 ,

is an anytime confidence set for θ? at level at least 1− δ i.e P
(
∀t ≥ 1, θ? ∈ Et(δ)

)
≥ 1− δ.

Proof. By Eq. (1.21):
∥∥∥gt(θ̃t)− gt(θ?)

∥∥∥
G−1
t

=
∥∥∥θ̃t − θ?

∥∥∥
Gt

. (1.30)

Recall that θ? ∈ Θ by Assumption 1.3.1 and θ̃t ∈ Θ by its definition in Eq. (1.14). Therefore
Eq. (1.23) holds and we have the following chain of inequalities:
∥∥∥θ̃t − θ?

∥∥∥
Vt

≤ ¯̀−1/2
µ

∥∥∥θ̃t − θ?
∥∥∥

Gt

(Eq. (1.23))

= ¯̀−1/2
µ

∥∥∥gt(θ̃t)− gt(θ?)
∥∥∥

G−1
t

(Eq. (1.30))

≤ ¯̀−1
µ

∥∥∥gt(θ̃t)− gt(θ?)
∥∥∥

V−1
t

(Eq. (1.23))

≤ ¯̀−1
µ

(∥∥∥gt(θ?)− gt(θ̂t)
∥∥∥

V−1
t

+
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
V−1
t

)
(triangle inequality)

≤ 2¯̀−1
µ

∥∥∥gt(θ?)− gt(θ̂t)
∥∥∥

V−1
t

. (def. of θ̃t) (1.31)

where in the last inequality we used that by definition of θ̃t and given θ? ∈ Θ we have:
∥∥∥gt(θ?)− gt(θ̂t)

∥∥∥
V−1
t

≥
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
V−1
t

.

It remains to bound the l.h.s of Eq. (1.31). By the optimality condition of the MLE (∇Lt|θ̂t = 0d)
we have that gt(θ̂t) = ∑t−1

s=1 rs+1as. Therefore by direct computation:

gt(θ̂t)− gt(θ?) =
t−1∑

s=1

[
rs+1 − µ(aT

s θ?)
]
as − λθ? ,

=
t−1∑

s=1
ηs+1as − λθ? ,

where ηs+1 := rs+1 − µ(aT
s θ?). As a result:

∥∥∥gt(θ̂t)− gt(θ?)
∥∥∥

V−1
t

≤
∥∥∥∥∥
t−1∑

s=1
ηs+1as

∥∥∥∥∥
V−1
t

+
√
λ¯̀
µS

44
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since Vt � (λ/¯̀
µ)Id and ‖θ?‖ ≤ S. Finally, note that by Eq. (1.11) along with Assumption 1.3.2

we have that for all s ≥ 1, ηs+1 is σ-sub-Gaussian conditionally on Fs. Therefore a direct
application of Theorem 1 of Abbasi-Yadkori et al. (2011) yields:

∥∥∥∥∥
t−1∑

s=1
ηs+1as

∥∥∥∥∥
V−1
t

≤ σ

√√√√2 log
(

det(Vt)¯̀d/2
µ

δλd/2

)
. (1.32)

Assembling Eq. (1.32) with Eq. (1.31) along with an application of the determinant-trace in-
equality (see Lemma B.2) yields the announced result. �

Appendix 1.B Proof of self-concordance results
We start by stating and proving the following lemmas, obtained by following the line of proof
from (Bach, 2010, Lemma 1).

Lemma 1.B.1. Let f be a strictly increasing, twice differentiable function such that |f̈ | ≤ ḟ ,
and let Z be any bounded interval of R. Then, for all z1, z2 ∈ Z:

∫ 1

v=0
ḟ (z1 + v(z2 − z1)) dv ≥ ḟ(z)

1 + |z1 − z2|
for z ∈ {z1, z2}.

Proof. The function f being strictly increasing, we have that ḟ(z) > 0 for any z ∈ Z. Therefore:

−1 ≤ f̈(z)
ḟ(z)

≤ 1

⇒ −|z1 − z0| ≤
∫ z1∨z0

z1∧z0

f̈(z)
ḟ(z)

dz ≤ |z1 − z0| for any z0 ∈ Z

⇔ −|z1 − z0| ≤ log
(
ḟ(z1 ∨ z0)/ḟ(z1 ∧ z0)

)
≤ |z1 − z0|

⇔ ḟ(z1 ∧ z0) exp (−|z1 − z0|) ≤ ḟ(z1 ∨ z0) ≤ ḟ(z1 ∧ z0) exp (|z1 − z0|) . (1.33)

Assume for now that z2 ≥ z1, let v ≥ 0 and set z0 = z1 + v(z2 − z1), which is such that z0 ≥ z1.
Using this definition with the l.h.s inequality of Eq. (1.33) we easily get:

ḟ (z1 + v(z2 − z1)) ≥ ḟ(z1) exp (−v|z2 − z1|)

⇒
∫ 1

v=0
ḟ(z1 + v(z2 − z1))dv ≥ ḟ(z1)1− exp (−|z1 − z2|)

|z1 − z2|
≥ ḟ(z1)(1 + |z1 − z2|)−1 .

where the last inequality is easily obtained by using exp(x) ≥ 1 + x for all x ∈ R. The same
inequality can be proven when z2 ≤ z1 by using the r.h.s inequality of Eq. (1.33) instead. We
have therefore proven the announced result, but only for z = z1. The proof is concluded by
realizing than z1 and z2 play a symmetric role in the problem (for instance, perform the change
of variable u← (1− v) in the integral that we wish to lower-bound). �

We now state a second result, which proof closely follows the one of Lemma 1.B.1.

Lemma 1.B.2. Let f be a strictly increasing function such that |f̈ | ≤ ḟ , and let Z be any
bounded interval of R. Then, for all z1, z2 ∈ Z:

∫ 1

v=0
(1− v)ḟ (z1 + v(z2 − z1)) dv ≥ ḟ(z1)

2 + |z1 − z2|
.
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Proof. From Eq. (1.33) it can easily be extracted that for all v ≥ 0:
ḟ(z1 + v(z2 − z1)) ≥ ḟ(z1) exp (−v|z1 − z2|) .

Integrating between v ∈ [0, 1] and subsequently integrating by part, we obtain:
∫ 1

v=0
(1− v)ḟ (z1 + v(z2 − z1)) dv ≥ ḟ(z1)

( 1
|z1 − z2|

+ exp (−|z1 − z2|)− 1
|z1 − z2|2

)

= ḟ(z1)g(|z1 − z2|).
where we defined:

g(x) := 1
x

(
1 + exp(−x)− 1

x

)
.

Finally, we use Lemma B.1 which guarantees that g(x) ≥ (2 + x)−1 for all z ≥ 0 to prove the
claimed result. �

We are now ready to prove Proposition 1.4.1.
Proposition 1.4.1 (Self-concordance control). Under Assumption 1.4.1 we have the following
list of inequalities. Let a ∈ A and θ1, θ2 ∈ Rd. Then:

α(a, θ1, θ2) ≥ µ̇(aTθ)
1 + |aT(θ1 − θ2)| for any θ ∈ {θ1, θ2} , (1.24)

≥ µ̇(aTθ)
1 + 2S when θ1, θ2 ∈ Θ . (1.25)

Similar results holds for α̃:

α̃(a, θ1, θ2) ≥ µ̇(aTθ1)
2 + |aT(θ1 − θ2)| , (1.26)

≥ µ̇(aTθ)
2 + 2S when θ1, θ2 ∈ Θ . (1.27)

This results into the following matrix inequalities; for any θ1, θ2 ∈ Θ:

Gt(θ1, θ2) � (1 + 2S)−1Ht(θ) for any θ ∈ {θ1, θ2} , (1.28)
G̃t(θ1, θ2) � (2 + 2S)−1Ht(θ1) (1.29)

Proof. Eq. (1.24) is a direct consequence of Lemma 1.B.1 and Eq. (1.25) is obtained thanks to
the bound |aT(θ1 − θ2)| ≤ 2S whenever θ1, θ2 ∈ Θ (recall that ‖a‖ ≤ 1 by Assumption 1.3.1).
Eq. (1.26) and Eq. (1.27) are obtained similarly thanks to Lemma 1.B.2. We can now prove
Eq. (1.28); for all θ1, θ2 ∈ Θ and θ ∈ {θ1, θ2}:

Gt(θ1, θ2) :=
t−1∑

s=1
α(as, θ1, θ2)asaT

s + λId (def.)

�
t−1∑

s=1

µ̇(aT
s θ)

1 + 2S asa
T
s + λId (Eq. (1.25))

= 1
1 + 2S

(
t−1∑

s=1
µ̇(aT

s θ)asaT
s + (1 + 2S)λId

)

� 1
1 + 2S

(
t−1∑

s=1
µ̇(aT

s θ)asaT
s + λId

)
(1 + 2S ≥ 1)

= 1
1 + 2SHt(θ) (def. of Ht)

The proof Eq. (1.29) follows the same reasoning. �
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We will need one last technical result obtained from the self-concordance property. Its proof can
be extracted from Eq. (1.33) in the proof of Lemma 1.B.1.

Lemma 1.B.3. Let f be a strictly increasing function such that |f̈ | ≤ ḟ , and let Z be any
bounded interval of R. Then, for all z1, z2 ∈ Z:

ḟ(z2) exp (−|z2 − z1|) ≤ ḟ(z1) ≤ ḟ(z2) exp (|z2 − z1|)



Chapter 2

Variance-Aware Confidence Sets for
Generalized Linear Bandits

The goal of this chapter is to derive improved confidence sets for GLBs. We first provide some
intuition on a “candidate” set that fits our requirements, obtained by an asymptotical analysis
and in a random-design setting. To prove its validity in the general bandit setting we provide
a new concentration result based on the theory of self-normalized process: a Bernstein-like tail-
inequality for self-normalized martingales. We review its ties, similarities and differences with
the concentration inequality of Abbasi-Yadkori et al. (2011) before applying it to the design of
an improved confidence set for GLBs. The main feature of this confidence set resides in its local
variance sensitivity which captures the effective level of non-linearity in the environment. This
feature is central to the rest of our contributions as it allows for a refined local treatment of the
non-linearity. We provide several illustrations in the Logistic Bandit setting and present several
variants (e.g a convex relaxation) as well as an extension to a weighted martingale version which
will be used for non-stationary environments.
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2.1 Towards improved confidence sets

In the previous chapter we introduced the confidence set of Filippi et al. (2010):

Et(δ) :=
{
θ ∈ Θ,

∥∥∥θ − θ̃t
∥∥∥

Vt

≤ 2
¯̀
µ

(√
λ¯̀
µS + σ

√
d log

(
(1 + t¯̀µ/λ)/δ

))}
,

which as in the LB case is an ellipsoid, but is now inflated by a factor 1/¯̀
µ. As we already

mentioned this comes with two important drawbacks; (1) the confidence set is prohibitively
large and leads to over-explorative algorithms and (2) it is not sensitive to the effective non-
linearity of the reward signal. The goal of this section is to build some intuition on what a better
alternative that fixes those drawbacks could look like.

An asymptotic argument. We start by an asymptotic reasoning under a random design,
inspired by (Filippi et al., 2010, Section 4.2). We assume that the arms are randomly drawn
according to a fixed distribution (e.g a ∼ N (0, 1)) and consider a GLB tied to an exponential
family - that is such that the reward distribution has a density (w.r.t a given reference measure)
p(r|a, θ?) ∝ exp(raTθ? − b(aTθ?)). The Fisher information matrix of this model writes:

Fθ? := EaEr
[
− ∇2 log p(r|a, θ)

∣∣∣
θ?

]
= Ea

[
µ̇(aTθ?)aaT

]
.

Existing resulting regarding the asymptotic normality of the maximum-likelihood estimator
(Van der Vaart, 2000, Section 5.3) yields that ( d−→ indicates convergence in distribution):

√
tF1/2

θ?

(
θ̂t − θ?

)
d−→ N (0, Id) .

Recall that Ht(θ?) = ∑t
s=1 µ̇(aT

s θ?)asaT
s + λId; by the law of large numbers we have that

t−1Ht(θ?) a.s−−→ Fθ? . Henceforth by a direct application of Slutsky’s lemma (Van der Vaart,
2000, Lemma 2.8) and the continuous mapping theorem (Van der Vaart, 2000, Theorem 2.3):

(
θ̂t − θ?

)T
Ht(θ?)

(
θ̂t − θ?

)
d−→ χ2

d .

Leveraging known tail bounds for Chi-Square random variable (Laurent and Massart, 2000) this
suggests the following asymptotic confidence set at confidence level 1− δ:

C∞t (δ) =
{
θ ∈ Θ,

∥∥∥θ − θ̂t
∥∥∥

Ht(θ)
≤ 2

√
d ln(1/δ)

}
.

The matrix Ht(θ) therefore appears as the right metric to measure distance between parameters.
This asymptotic confidence interval indeed addresses the two issues we highlighted for Et(δ); (1)
by using the bound Ht(θ) � ¯̀

µVt when θ ∈ Θ one can show that C∞t (δ) is smaller than Et(δ) by
a factor at least ¯̀1/2

µ . Further (2) this confidence set is sensitive to the effective non-linearity
of the reward signal since the metric Ht(θ) accounts for the varying reward sensitivity through
the derivative µ̇ of the link function.

Towards the general case. We will focus now on proving a finite-time alternative to C∞t (δ)
that is valid under adaptive design - the arms {as}Ts=1 are far from being independent when gen-
erated by a bandit algorithm. To do so we need to resort to adequate concentration inequalities
as the design of the confidence set is linked to the control of a sum of random variables. This
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link is made explicit by the following set of inequalities (to simplify the exposition we assume
for now that θ̂t ∈ Θ):

∥∥∥θ̂t − θ?
∥∥∥

Ht(θ?)
≤
√

1 + 2S
∥∥∥θ̂t − θ?

∥∥∥
Gt(θ?,θ̂t)

(Eq. (1.28))

=
√

1 + 2S
∥∥∥gt(θ̂t)− gt(θ?)

∥∥∥
G−1
t (θ?,θ̂t)

(Eq. (1.21))

≤ (1 + 2S)
∥∥∥gt(θ̂t)− gt(θ?)

∥∥∥
H−1
t (θ?)

(Eq. (1.28))

≤ (1 + 2S)
(√

λS +
∥∥∥∥∥
t−1∑

s=1
ηs+1as

∥∥∥∥∥
H−1
t (θ?)

)
,

where we last used the optimality condition for θ̂t and defined ηs+1 := rs+1−µ(aTθ?). Our goal is
therefore to control ‖∑t−1

s=1 ηs+1as‖H−1
t (θ?) without resorting to bounding strategies that involves

¯̀
µ. It is useful to gain a bit of intuition on why this should be achievable. The residual noise
ηs+1 is zero-mean by Eq. (1.17) and its conditional variance is such that Var(ηs+1|Fs) = µ̇(aT

s θ?)
by Eq. (1.18). Therefore in the directions a ∈ A such that the following quantity:

aTH−1
t (θ?)a ≈

1
µ̇(aTθ?)

(
t−1∑

s=1
1(as = a)

)−1

is large, the conditional variance of the associated residuals is small and they concentrate fast.
Intuitively this argument suggests that ‖∑t−1

s=1 ηs+1as‖H−1
t (θ?) indeed scales independently of the

smallest eigenvalues of Ht(θ?) and in particular independently of ¯̀
µ. This variance sensitivity

argument justifies the name for the formal result presented in the next section as it brings a
similar conclusion than the Bernstein concentration inequality (see Lemma A.5).

2.2 Bernstein-like tail-inequality for self-normalized martingales

2.2.1 Result and discussion

We present here an important technical result at the core of improved confidence sets for GLBs.
It extends known results on self-normalized martingales (de la Pena et al., 2004). Its main
novelty compared to the concentration inequality from (Abbasi-Yadkori et al., 2011, Theorem
1) resides in considering martingale increments that satisfy a Bernstein-like condition instead of
a sub-Gaussian condition. This allows to derive tail-inequalities for martingales “re-normalized”
by their quadratic variation.

Theorem 2.2.1 (Bernstein-like tail-inequality for self-normalized martingales). Let {Ft}∞t=1 be
a filtration. Let {at}∞t=1 be a stochastic process in Bd(0, 1) such that at is Ft-measurable. Let
{ηt}∞t=2 be a martingale difference sequence such that ηt+1 is Ft+1-measurable. Furthermore,
assume that conditionally on Ft we have |ηt+1| ≤ σ almost surely and denote v2

t := E
[
η2
t+1|Ft

]
.

Let λ > 0 and for any t ≥ 1 define:

Ht :=
t−1∑

s=1
v2
sasa

T
s + λId, St :=

t−1∑

s=1
ηs+1as.

Then for any δ ∈ (0, 1]:

P
(
∀t ≥ 1, ‖St‖H−1

t
≤
√
λ

2σ + 2σ√
λ

log
(
2d det (Ht)

1
2λ−

d
2 /δ

))
≥ 1− δ.
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A direct application of the trace-determinant inequality (see Lemma B.2) along simple manip-
ulations yield a slightly degraded confidence upper-bound.

Corollary 2.2.1. Under the conditions of Theorem 2.2.1 with probability at least 1− δ:

∀t ≥ 1, ‖St‖H−1
t
≤
√
λ

2σ + σd√
λ

log
(
4(1 + σ2t/(dλ))/δ)

)
.

Theorem 2.2.1 also holds when the regularization is time-dependent.

Corollary 2.2.2 (Time-varying regularization). The confidence bound of Theorem 2.2.1 and
Corollary 2.2.1 are preserved with time-varying regularization λt if the sequence of regularization
coefficients {λt}∞t=1 is deterministic.

Discussion. The closest inequality of this type was derived by Abbasi-Yadkori et al. (2011)
yet Theorem 2.2.1 cannot be recovered by their bound. Indeed introducing ω2 := infs≥1 v2

s , it
can be extracted from their Theorem 1 that with probability at least 1− δ for all t ≥ 1:

‖St‖V−1
t
≤ σ

√
2d log ((1 + ω2t/(λd))/δ),

where Vt = ∑t−1
s=1 asa

T
s + (λ/ω2)Id. This result can be used to derive a high-probability bound

on ‖St‖H−1
t
. Noticing that Ht � ω2Vt yields that with probability at least 1− δ for all t ≥ 1:

‖St‖H−1
t

= O
(
ω−1

√
d log(t/δ)

)
. (2.1)

In contrast the bound of Corollary 2.2.1 gives that with probability at least 1− δ for all t ≥ 1:

‖St‖H−1
t

= O (d log(t/δ)) .

This shaves a multiplicative factor 1/ω which is large if some ηs have small conditional variance.
It is however lagging by a

√
d log(t) factor behind the bound provided in Eq. (2.1). This issue

can be fixed by adjusting the regularization parameter. Indeed by setting λt = d log(2 + t/δ)
Corollary 2.2.2 ensures that with probability at least 1− δ for all t ≥ 1:

‖St‖H−1
t

= O
(√

d log(t/δ)
)
.

In this case Theorem 2.2.1 brings a strict improvement over Eq. (2.1) which involves the minimum
conditional variance ω.

2.2.2 Proof of Theorem 2.2.1

First notice that by normalization it is enough to prove the result for σ = 1 and the general
result follows simply by replacing λ by λ/σ2. In the following we therefore consider σ = 1.
The proof follows the steps of the pseudo-maximization principle introduced in de la Pena et al.
(2004), used by Abbasi-Yadkori et al. (2011) for the linear bandit and thoroughly detailed in
Chapter 20 of Lattimore and Szepesvári (2020). The main idea is to realize that ‖St‖2H−1

t

=
4 maxξ∈Rd ξTSt − ‖ξ‖2Ht

. We will show that the exponential of this r.h.s term is (almost) a
super-martingale. Unfortuntately, exp(maxξ∈Rd ξTSt − ‖ξ‖2Ht

) cannot be directly controlled; it
can however be approximated by integration over ξ - a technique known as the Laplace trick or
pseudo-maximization. For readability concerns define β =

√
2λ and write:

Ht =
t−1∑

s=1
v2
sasa

T
s + β2

2 Id = H̄t + β2

2 Id.
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where H̄t := ∑t−1
s=1 v

2
sasa

T
s . For all ξ ∈ Rd let M0(ξ) = 1 and for t ≥ 1 define:

Mt(ξ) := exp
(
ξTSt − ‖ξ‖2H̄t

)
.

We start the proof by the following intermediary result.

Lemma 2.2.1 (Extracted from Proposition 3.5 of Freedman (1975)). Let ε be a centered random
variable of variance v2 and such that |ε| ≤ 1 almost surely. Then for all u ∈ [−1, 1]:

E [exp(uε)] ≤ 1 + u2v2.

This is useful to prove that Mt(ξ) is a super-martingale for some values of ξ.

Lemma 2.2.2. For all ξ ∈ B2(0, 1), {Mt(ξ)}∞t=1 is a {Ft}∞t=1-adapted non-negative super-
martingale.

Proof. For all t ≥ 1 we have that:

E
[
exp(ξTSt)|Ft−1

]
= exp(ξTSt−1)E

[
exp(ξTat−1ηt)|Ft−1

]
.

By Cauchy-Schwarz |ξTat−1| ≤ ‖ξ‖ ‖at−1‖ ≤ 1 and therefore by Lemma 2.2.1:

E
[
exp(ξTSt)|Ft−1

]
≤ exp(ξTSt−1)(1 + v2

t−1(aT
t−1ξ)2) ,

≤ exp(ξTSt−1 + v2
t−1(aT

t−1ξ)2) . (1 + x ≤ ex)

Therefore:

E [Mt(ξ)|Ft−1] = E
[
exp

(
ξTSt − ‖ξ‖2H̄t

)∣∣∣Ft−1
]

= E
[
exp

(
ξTSt

)∣∣∣Ft−1
]

exp
(
−
t−1∑

s=1
v2
s(aT

s ξ)2
)

≤ exp
(
ξTSt−1 + v2

t−1(aT
t−1ξ)2 −

t−1∑

s=1
v2
s(aT

s ξ)2
)

= Mt−1(ξ)

yielding the announced result. �

Note thatMt(ξ) is a super-martingale only for ξ ∈ Bd(0, 1). This is a difference with the approach
of Abbasi-Yadkori et al. (2011) (their counterpart forMt(ξ) is a super-martingale for any ξ ∈ Rd)
and calls for some refinements when using the Laplace trick to provide a high-probability bound
on the maximum of logMt(ξ).
Let h(ξ) be a probability density function with support on Bd(0, 1) (to be defined later). For
t ≥ 0 let:

M̄t :=
∫

ξ
Mt(ξ)dh(ξ)

By Lemma 20.3 of Lattimore and Szepesvári (2020) M̄t is also a non-negative super-martingale,
and E

[
M̄0
]

= 1. Let τ be a stopping time with respect to the filtration {Ft}∞t=0. We can
follow the proof of Lemma 8 in Abbasi-Yadkori et al. (2011) to justify that M̄τ is well-defined
(independently of whether τ <∞ holds or not) and that E

[
M̄τ

]
≤ 1. Therefore, with δ ∈ (0, 1)

and thanks to the maximal inequality:

P
(

log(M̄τ ) ≥ log(1
δ

)
)

= P
(
M̄τ ≥

1
δ

)
≤ δ (2.2)
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We can now proceed to compute M̄t (more precisely a lower bound on M̄t). Set h to be the
density of a centered normal distribution of isotropic precision β2 truncated on Bd(0, 1). We will
denote N(h) its normalization constant. Simple computations show that:

M̄t = 1
N(h)

∫

Bd(0,1)
exp

(
ξTSt − ‖ξ‖2Ht

)
dξ

To ease notations, let f(ξ) := ξTSt − ‖ξ‖2Ht
and ξ∗ = arg max‖ξ‖≤1/2 f(ξ). Because:

f(ξ) = f(ξ∗) + (ξ − ξ∗)T∇f(ξ∗)− (ξ − ξ∗)THt(ξ − ξ∗)

we obtain that:

M̄t = ef(ξ∗)

N(h)

∫

Rd
1‖ξ‖≤1 exp

(
(ξ − ξ∗)T∇f(ξ∗)− (ξ − ξ∗)THt(ξ − ξ∗)

)
dξ

= ef(ξ∗)

N(h)

∫

Rd
1‖ξ+ξ∗‖≤1 exp

(
ξT∇f(ξ∗)− ξTHtξ

)
dξ (change of variable ξ + ξ∗)

≥ ef(ξ∗)

N(h)

∫

Rd
1‖ξ‖≤1/2 exp

(
ξT∇f(ξ∗)− ξTHtξ

)
dξ (as ‖ξ∗‖ ≤ 1/2)

= ef(ξ∗)

N(h)

∫

Rd
1‖ξ‖≤1/2 exp

(
ξT∇f(ξ∗)

)
exp

(
−1

2ξ
T(2Ht)ξ

)
dξ .

By defining g the density of the centered normal distribution of precision 2Ht truncated on the
ball

{
ξ ∈ Rd, ‖ξ‖ ≤ 1/2

}
and noting N(g) its normalizing constant, we can rewrite:

M̄t ≥ exp (f(ξ∗))
N(g)
N(h)Eg

[
exp

(
ξT∇f(ξ∗)

)]

≥ exp (f(ξ∗))
N(g)
N(h) exp

(
Eg
[
ξT∇f(ξ∗)

])
(Jensen’s inequality)

≥ exp (f(ξ∗))
N(g)
N(h) (as Eg [ξ] = 0) . (2.3)

Unpacking this results and assembling (2.2) and (2.3), we obtain that:

P
(
M̄t ≥

1
δ

)
≥ P

(
exp (f(ξ∗))

N(g)
N(h) ≥ 1/δ

)

= P
(

log
(

exp (f(ξ∗))
N(g)
N(h)

)
≥ log(1/δ)

)

= P
(
f(ξ∗) ≥ log(1/δ) + log

(
N(h)
N(g)

))

= P
(

max
‖ξ‖≤1/2

ξTSt − ‖ξ‖2Ht
≥ log(1/δ) + log

(
N(h)
N(g)

))

≥ P
(
ξT

0 St − ‖ξ0‖2Ht
≥ log(1/δ) + log

(
N(h)
N(g)

))
, (2.4)

for any ξ0 such that ‖ξ0‖ ≤ 1/2. In particular, we can use:

ξ0 := H−1
t St

‖St‖H−1
t

β

2
√

2
,
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since

‖ξ0‖ ≤
β

2
√

2

(
λmin(H̄t) + β2

2

)−1/2

≤ 1/2 .

Using this value of ξ0 in Equation (2.4) yields:

P
(
‖St‖H−1

t
≥ β

2
√

2
+ 2
√

2
β

log
(
N(h)
δN(g)

))
≤ P

(
M̄t ≥

1
δ

)
.

To finish the proof we have left to explicit the quantities N(h) and N(g). Lemma 2.2.3 provides
an upper-bound for the log of their ratio. Its proof is given by straight-forward computations
and deferred to Section 2.A.

Lemma 2.2.3. The following inequality holds:

log
(
N(h)
N(g)

)
≤ log

(
2d/2 det (Ht)1/2

βd

)
+ d log(2) .

Therefore with probability at least 1− δ and by using Equation (2.2):

‖Sτ‖H−1
τ
≤ β

2
√

2
+ 2
√

2
β

log(1/δ) + 2
√

2
β

log
(

2d/2 det (Hτ )1/2

βd

)
+ 2
√

2
β

d log(2) .

Directly following the stopping time construction argument in the proof of Theorem 1 of Abbasi-
Yadkori et al. (2011) we obtain that with probability at least 1− δ, for all t ∈ N:

‖St‖H−1
t
≤ β

2
√

2
+ 2
√

2
β

log
(

2d/2 det (Ht)1/2

βdδ

)
+ 2
√

2
β

d log(2) .

Finally, recalling that β =
√

2λ and straight-forward factorization provide the announced result.
The proofs for Corollary 2.2.1 and Corollary 2.2.2 are deferred to Appendix 2.B.

2.3 Application to the design of confidence-sets for GLBs
We now go back to the design of confidence sets for GLBs. To ease exposition we use the slightly
looser form of the concentration inequality presented in Corollary 2.2.1, however when used in
an algorithm it is always desirable to use the log-determinant form of Theorem 2.2.1.

2.3.1 Confidence set

We have seen that time-varying regularization allows to obtain improved dependencies w.r.t t
and d; we will use it to obtain tight confidence sets and order-optimal algorithms. In what
follows for δ ∈ (0, 1] we set λt = d log(2 + t/δ) for all t ≥ 1 and define:

γt(δ) =
√
λt(S + (2σ)−1) + σd√

λt
log
(
4(1 + σ2t/(dλt))/δ)

)
= O

(√
d log(t/δ)

)
.

A direct applications of our concentration inequality yields the following confidence set, valid for
all GLBs satisfying the second-moment condition of Eq. (1.18) (i.e not only self-concordant).
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Theorem 2.3.1 (Variance-sensitive confidence set). Let δ ∈ (0, 1]. The set:

Ct(δ) =
{
θ ∈ Θ,

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

H−1
t (θ)

≤ γt(δ)
}
,

is an anytime confidence set for θ? at level at least 1− δ;

P (∀t ≥ 1, θ? ∈ Ct(δ)) ≥ 1− δ .

Proof. By using the optimality of θ̂t and defining ηs+1 := rs+1 − µ(aTθ?) for all s ≥ 1 simple
upper-bounding yields:

∥∥∥gt(θ̂t)− gt(θ?)
∥∥∥

H−1
t (θ?)

≤
√
λtS +

∥∥∥∥∥
t−1∑

s=1
ηs+1as

∥∥∥∥∥
H−1
t (θ?)

By Eqs. (1.17) and (1.18) and Assumption 1.3.2 the most r.h.s term satisfy all conditions of
Theorem 2.2.1. Applying Corollary 2.2.2 yields that with probability at least 1− δ;

∀t ≥ 1,
∥∥∥gt(θ̂t)− gt(θ?)

∥∥∥
H−1
t (θ?)

≤ γt(δ) .

which proves the announced result. �

The confidence set Ct(δ) is not the easiest to manipulate and visualize because it involves the
map gt. We introduce in Corollary 2.3.1 a marginally modified version for self-concordant GLBs,
more intuitive and easier to compare with previous confidence sets. We will replace θ̂t by its
adequate “projection” on Θ:

θ̃t := arg min
θ∈Θ

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

H−1
t (θ)

. (2.5)

This projection mirrors the one of Eq. (1.14) necessary for the design of the confidence set of
(Filippi et al., 2010). Similarly it is made trivial when θ̂t ∈ Θ. It is the center of the following
confidence region, which allows for a neat comparison with the one from Theorem 1.3.1.

Corollary 2.3.1. Let δ ∈ (0, 1]. Under Assumption 1.4.1 the set:

C′t(δ) =
{
θ ∈ Θ,

∥∥∥θ − θ̃t
∥∥∥

Ht(θ)
≤ 2(1 + 2S)γt(δ)

}
, (2.6)

is such that Ct(δ) ⊆ C′t(δ) and therefore is also an anytime confidence set for θ?.

The proof is already sketched in Section 2.1 and deferred it to Appendix 2.C. Corollary 2.3.1
brings a positive answer to our goal from Section 2.1: derive a finite-time, adaptive-design version
of the asymptotic confidence set C∞t (δ). It brings a significant improvement over the confidence
set Et(δ) of Filippi et al. (2010). Indeed, in the worst-case (w.r.t to the sequence of arms played)
for which Ht(θ) = ¯̀

µVt, the sets Et(δ) and C′t(δ) have the same shape but the radius of the
former is smaller than the latter’s by a factor ≈ ¯̀1/2

µ which is typically exponentially small w.r.t
S. This is illustrated in Fig. 2.1 in the LogB setting.

Remark 2.3.1 (Proving the conjecture of Filippi et al. (2010)). In their section 4.2 Filippi et al.
(2010) relied on an asymptotical argument to motivate a heuristic algorithm which exploration
bonus is deflated by a factor ¯̀1/2

µ compared to GLM-UCB. More precisely, they argue that under a
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Figure 2.1: ( ) Visualization of two-dimensional Logistic bandit confidence sets. The con-
fidence sets are generated by the same trajectory {as}200

s=1 but on different environments. On
the first one (left) ‖θ?‖ is moderate and the level of non-linearity is small; the confidence set
Et(δ) and C′t(δ) are comparable. On the second one (right) ‖θ?‖ is large and the reward signal is
highly non-linear. In this configuration C′t(δ) is much tighter than Et(δ). In the LogB case the
difference in diameter between the two confidence sets grows exponentially with ‖θ?‖.

random design the prediction error ∆t(a) can be asymptotically bounded by Õ(L̄µ/
√

¯̀
µ). Corol-

lary 2.3.1 shows that this still holds non-asymptotically and under an adaptive design. This
gives the first formal theoretical justification for the heuristic algorithm of Filippi et al. (2010).
Indeed by linearization and the Cauchy-Schwarz inequality;

∆t(a) = |µ(aTθ̃t)− µ(aTθ?)| ≤L̄µ ‖a‖H−1
t (θ?)

∥∥∥θ̃t − θ?
∥∥∥

H−1
t (θ?)

,

≤ 2(1 + 2S)L̄µ ¯̀−1/2
µ γt(δ) ‖a‖V−1

t
,

where we last used Ht(θ?) � ¯̀
µVt and Corollary 2.3.1. It turns out that this is actually a

degradation of our confidence set’s properties and that improved prediction bounds are obtainable
- this is the main point of the following chapter.

2.3.2 A convex relaxation

The confidence sets Ct(δ) and C′t(δ) from Theorem 2.3.1 improve over Et(δ) but can be challenging
to incorporate in one’s algorithmic design as they are in all generality non-convex sets (see
Fig. 2.2). The following theorem shows that for self-concordant GLBs they can be relaxed into a
convex confidence set, only at the cost of a minor radius inflation. This result will be important
to derive tractable algorithms. Define for all t ≥ 1:

βt(δ) := γt(δ) + γt(δ)2/
√
λt ,

which is a O(
√
d log(t/δ)) since λt = d log(2 + t/δ).
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Figure 2.2: ( ) The confidence set Ct(δ) and its convex relaxation Cct (δ) on a LogB problem
with ‖θ?‖ = 3. The sequence of arm {as}1000

s=1 is chosen to highlight the non-convexity of Ct(δ).

Corollary 2.3.2 (Convex relaxation). Let δ ∈ (0, 1]. For all t ≥ 1 the set:

Cct (δ) :=
{
θ ∈ Θ, Lt(θ)− Lt(θ̂t) ≤ βt(δ)2

}
,

is convex and under Assumption 1.4.1 satisfies:

(1) Ct(δ) ⊆ Cct (δ) i.e Cct (δ) is an anytime confidence set for θ? at level 1− δ.

(2) With probability at least 1− δ and ∀θ ∈ Cct (δ):

‖θ − θ?‖Ht(θ?) ≤ (2 + 2S)γt(δ) + 2
√

1 + Sβt(δ) .

This result essentially allows to replace Ct(δ) by its convex counterpart Cct (δ) while conserving
the similar guarantees. Indeed Cct (δ) is a confidence set with a similar diameter since by (2) it
measures a similar deviation w.r.t θ? as Ct(δ) since with high probability:

∀θ ∈ Cct (δ), ‖θ − θ?‖Ht(θ?) = O
(√

d log(t/δ)
)
.

The proof mostly involves self-concordance inequalities and is deferred to Appendix 2.D.

2.4 An extension to weighted self-normalized martingales
In this section we present an extension of Theorem 2.2.1 to weighted self-normalized martingales.
Slightly anticipating on Chapter 4 it will be useful in non-stationary settings where it is impor-
tant to re-weight samples according to their freshness. This allows to “forget” old interactions
which signal might have become meaningless given the non-stationary nature of the environ-
ment. Formally, consider a sequence of weights {ws}Ts=1. We make the following assumption on
this sequence, which for instance fit exponential weights ws = γT−s for γ > 0.

Assumption 2.4.1 (Admissible weights). The weights {ws}Ts=1 are deterministic, strictly pos-
itive and non-decreasing:

0 < w1 ≤ wt ≤ wt+1 ≤ wT for all 1 ≤ t ≤ T − 1 .

Theorem 2.4.1 to follow provides a high-confidence bound for the weighted martingale St =∑t−1
s=1wsηs+1as re-normalized by its quadratic variation.
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Theorem 2.4.1 (Bernstein-like tail-inequality for weighted self-normalized martingales). Let
T be a known integer and {Ft}Tt=1 a filtration. Let {at}Tt=1 be a stochastic process on B2(0, 1)
such that at is Ft-measurable. Let {ηt}Tt=2 be a martingale difference sequence such that ηt+1
is Ft+1-measurable. Let {wt}Tt=1 a sequence of weights satisfying Assumption 2.4.1 and {λt}Tt=1
be a deterministic, strictly positive sequence of regularization terms. Furthermore, assume that
conditionally on Ft we have |ηt+1| ≤ σ a.s. and denote v2

t = E
[
η2
t+1|Ft

]
. For all t ∈ [T ] define:

H̃t =
t−1∑

s=1
w2
sv

2
sasa

T
s + λtId and St =

t−1∑

s=1
wsηs+1as .

Then for any δ ∈ (0, 1] and any fixed t ∈ [T ]:

P
(
‖St‖H̃−1

t
≤
√
λt

2σwt−1
+ 2σwt−1√

λt
log

(
2d det(H̃t)1/2

δλ
d/2
t

))
≥ 1− δ .

A few remarks are in order. First note that the high-confident bound of Theorem 2.4.1 is not
anytime but holds only for a fixed t. A union bound is required to ensures it holds simultaneously
over all t ∈ [T ]. It could appear at first that Theorem 2.4.1 is a direct corollary of Theorem 2.2.1
obtained by redefining η̃s+1 = wsηs+1 and using the normalization property of the self-normalized
martingale. This approach ultimately yields a much looser bound that will replace wt−1 in
Theorem 2.4.1 by mins∈[T ]ws−1. This is problematic when the latter is much smaller than the
former - e.g with exponential weights, this leads an exponentially degraded bound. With this
technical difficulty in mind the proof of Theorem 2.2.1 can still be re-used; the main “trick” is
to study the super-martingale:

M t
s(ξ) := exp

(
(mwt−1)−1ξTSs − (mwt−1)−2ξT

(
s−1∑

u=1
w2
uv

2
uaua

T
u

)
ξ

)

where t is fixed. This however rules out the stopping time argument of Abbasi-Yadkori et al.
(2011) hence the loss of the anytime behavior of the resulting confidence bound. The formal
proof is deferred to Appendix 2.E. A simple union bound yields the following anytime bound.

Corollary 2.4.1. Under the conditions of Theorem 2.4.1, with probability at least 1− δ:

∀t ∈ [T ], ‖St‖H̃−1
t
≤
√
λt

2σwt−1
+ 2σwt−1√

λt
log

(
2dT det(H̃t)1/2

δλ
d/2
t

)



Appendix
Appendix 2.A Proof of Lemma 2.2.3
Lemma 2.2.3. The following inequality holds:

log
(
N(h)
N(g)

)
≤ log

(
2d/2 det (Ht)1/2

βd

)
+ d log(2) .

Proof. Recall that h is the density of a d-dimensional, centered normal distribution with isotropic
precision β2 and truncated on Bd(0, 1). The quantity N(h) is its normalization constant and
thanks to a change of variable:

N(h) =
∫

Rd
1 [‖ξ‖2 ≤ 1] exp

(
−1

2β
2‖ξ‖22

)
dξ

= β−d
∫

Rd
1 [‖ξ‖2 ≤ β] exp

(
−1

2‖ξ‖
2
2

)
dξ

On the other hand g is the density of the centered normal distribution with precision matrix
2Ht truncated on Bd(0, 1/2). Also by a change of variable

N(g) =
∫

Rd
1 [‖ξ‖2 ≤ 1/2] exp

(
−1

2ξ
T(2Ht)ξ

)
dξ

= det(Ht)−1/22−d/2
∫

Rd
1
[
‖2−1/2H−1/2

t ξ‖2 ≤ 1/2
]

exp
(
−1

2‖ξ‖
2
2

)

= det(Ht)−1/22−d/2
∫

Rd
1



∥∥∥∥∥∥

(
H̄t + β2

2 Id
)−1/2

ξ

∥∥∥∥∥∥
2

≤ 1/
√

2


 exp

(
−1

2‖ξ‖
2
2

)

≥ det(Ht)−1/22−d/2
∫

Rd
1 [‖ξ‖2 ≤ β/2] exp

(
−1

2‖ξ‖
2
2

)

We obtain the following upper-bound on the ratio N(h)/N(g):

N(h)
N(g) ≤ β

−d det(Ht)1/2 2d/2
∫
Rd 1 [‖ξ‖2 ≤ β] exp

(
−1

2‖ξ‖22
)
dξ

∫
Rd 1 [‖ξ‖2 ≤ β/2] exp

(
−1

2‖ξ‖22
) (2.7)

Note that:
∫
Rd 1 [‖ξ‖2 ≤ β] exp

(
−1

2‖ξ‖22
)
dξ

∫
Rd 1 [‖ξ‖2 ≤ β/2] exp

(
−1

2‖ξ‖22
) = 1 +

∫
Rd 1 [β/2 ≤ ‖ξ‖2 ≤ β] exp

(
−1

2‖ξ‖22
)
dξ

∫
Rd 1 [‖ξ‖2 ≤ β/2] exp

(
−1

2‖ξ‖22
)

≤ 1 +
exp

(
−1

8β
2
)

exp
(
−1

8β
2
) ·

∫
Rd 1 [β/2 ≤ ‖ξ‖2 ≤ β] dξ∫

Rd 1 [‖ξ‖2 ≤ β/2]

= 1 + Vd(β)− Vd(β/2)
Vd(β/2)

= 2d

where Vd(β) ∝ βd denotes the volume of the d-dimensional ball of radius β. Plugging this result
in Equation (2.7) and taking the logarithm yields the announced result:

log
(
N(h)
N(g)

)
≤ log

(
2d/2 det(Ht)1/2

βd

)
+ d log(2) .

�
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Appendix 2.B Proof of corollaries of Theorem 2.2.1

2.B.1 Proof of Corollary 2.2.1

Corollary 2.2.1. Under the conditions of Theorem 2.2.1 with probability at least 1− δ:

∀t ≥ 1, ‖St‖H−1
t
≤
√
λ

2σ + σd√
λ

log
(
4(1 + σ2t/(dλ))/δ)

)
.

Proof. A simple application of the trace-determinant inequality (see Lemma B.2) yields that:

log det(Ht) ≤ d log(λ+ tσ2/d)

by using the fact that v2
t ≤ σ2 for any t ≥ 2. Rearranging in Theorem 2.2.1 along with simple

upper-bounding yields the result. �

2.B.2 Proof of Corollary 2.2.2

We state and prove below the formalization of Corollary 2.2.2. The result is obtained by following
an idea from (Russac et al., 2019, Proposition 1).

Proposition 2.B.1 (Formalization of Corollary 2.2.2). Let {Ft}∞t=1 be a filtration. Let {at}∞t=1
be a stochastic process in Bd(0, 1) such that at is Ft-measurable. Let {ηt}∞t=2 be a martingale
difference sequence such that ηt+1 is Ft+1-measurable. Furthermore, assume that conditionally
on Ft we have |ηt+1| ≤ σ almost surely and denote note v2

t := E
[
η2
t+1|Ft

]
. Let {λt}∞t=1 be a

predictable sequence of non-negative scalars and for any t ≥ 1 define:

Ht :=
t−1∑

s=1
v2
sasa

T
s + λtId, St :=

t−1∑

s=1
ηs+1as.

Then for any δ ∈ (0, 1]:

P
(
∀t ≥ 1, ‖St‖H−1

t
≤
√
λt

2σ + 2σ√
λt

log
(

2d det (Ht)
1
2λ
− d2
t /δ

))
≥ 1− δ.

Proof. The proof essentially follows the proof of Theorem 2.2.1 up to a minor modification to
allow for a time-varying regularization. Re-using notations from Section 2.2.2:

M0(ξ) = 1 and Mt(ξ) := exp
(
ξTSt − ‖ξ‖2H̄t

)
∀t ≥ 1 .

Recall that Mt(ξ) is a super-martingale and hence checks E [Mt(ξ)] ≤ 1 for all ξ ∈ Bd(0, 1).
Further, let gt(ξ) be the density of the normal distribution of precision 2Ht truncated on the
ball Bd(0, 1/2) and let:

M̄t =
∫
Mt(ξ)gt(ξ)dξ .

Note that M̄t is not (in all generality) a super-martingale - this is where the analysis changes.
This however doesn’t hurt the final result as one can still apply an appropriate stopping time
construction. Let τ be a stopping time with respect to {Ft}∞t=1. One can easily check (see for
instance the proof of Theorem 1 in Abbasi-Yadkori et al. (2011)) that Mτ (ξ) is well-defined and
E [Mτ (ξ)] ≤ 1 for all ξ ∈ Bd(0, 1/2), . Clearly we have:

E
[
M̄τ

]
=
∫

E [Mτ (ξ)] gτ (ξ)dξ ≤ 1 .
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Computing M̄τ following the proof of Theorem 2.2.1 eventually leads us to:

P
(
‖Sτ‖Hτ

≤
√
λτ
2 + 2√

λτ
log

(
2d det(Hτ )1/2

δλ
d/2
τ

))
≥ 1− δ .

From there, directly following the stopping time construction in the proof of Theorem 1 in
Abbasi-Yadkori et al. (2011) yields the announced result. �

Appendix 2.C Proof of Corollary 2.3.1

Corollary 2.3.1. Let δ ∈ (0, 1]. Under Assumption 1.4.1 the set:

C′t(δ) =
{
θ ∈ Θ,

∥∥∥θ − θ̃t
∥∥∥

Ht(θ)
≤ 2(1 + 2S)γt(δ)

}
, (2.6)

is such that Ct(δ) ⊆ C′t(δ) and therefore is also an anytime confidence set for θ?.

Proof. Let θ ∈ Θ ∩ Ct(δ). Then for all t ≥ 1:
∥∥∥θ − θ̃t

∥∥∥
Ht(θ)

≤
√

1 + 2S
∥∥∥θ − θ̃t

∥∥∥
Gt(θ,θ̃t)

(Eq. (1.28))

=
√

1 + 2S
∥∥∥gt(θ)− gt(θ̃t)

∥∥∥
Gt(θ,θ̃t)

(Eq. (1.21))

=
√

1 + 2S
(∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
Gt(θ,θ̃t)

+
∥∥∥gt(θt)− gt(θ̂t)

∥∥∥
Gt(θ,θ̃t)

)

≤ (1 + 2S)
(∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
H−1
t (θ)

+
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
H−1
t (θ̃t)

)
(Eq. (1.28))

≤ 2(1 + 2S)
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
H−1
t (θ)

(Eq. (2.5))

≤ 2(1 + 2S)γt(δ) (θ ∈ Ct(δ))

which proves that θ ∈ C′t(δ) and the announced result. �

Appendix 2.D Proof of Corollary 2.3.2

Corollary 2.3.2 (Convex relaxation). Let δ ∈ (0, 1]. For all t ≥ 1 the set:

Cct (δ) :=
{
θ ∈ Θ, Lt(θ)− Lt(θ̂t) ≤ βt(δ)2

}
,

is convex and under Assumption 1.4.1 satisfies:

(1) Ct(δ) ⊆ Cct (δ) i.e Cct (δ) is an anytime confidence set for θ? at level 1− δ.

(2) With probability at least 1− δ and ∀θ ∈ Cct (δ):

‖θ − θ?‖Ht(θ?) ≤ (2 + 2S)γt(δ) + 2
√

1 + Sβt(δ) .

Proof. We start by proving that Ct(δ) ⊆ Cct (δ). First, we claim Lemma 2.D.1, which proof is
deferred to Section 2.D.1.

Lemma 2.D.1. Let δ ∈ (0, 1]. For all θ ∈ Ct(δ):
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
G−1

t (θ,θ̂t)
≤ γ2

t (δ)√
λt

+ γt(δ) .
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By an exact second-order Taylor expansion of the log-loss (see Eq. (1.22)) for all θ ∈ Rd:

Lt(θ) = Lt(θ̂t) +∇Lt|Tθ̂t (θ − θ̂t) + (θ − θ̂t)TG̃t(θ, θ̂t)(θ − θ̂t)

By definition of θ̂t we have that ∇Lt|θ̂t = 0 and therefore:

Lt(θ) = Lt(θ̂t) +
∥∥∥θ − θ̂t

∥∥∥
2

G̃t(θ̂t,θ)

≤ Lt(θ̂t) +
∥∥∥θ − θ̂t

∥∥∥
2

Gt(θ̂t,θ)
(G̃t ≤ Gt)

= Lt(θ̂t) +
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
2

G−1
t (θ̂t,θ)

(Equation (1.21)) .

= Lt(θ̂t) +
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
2

G−1
t (θ,θ̂t)

(Gt(θ̂t, θ) = Gt(θ, θ̂t)) .

Therefore for any θ ∈ Ct(δ):

Lt(θ)− Lt(θ̂t) ≤
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
2

G−1
t (θ,θ̂t)

≤
(
γ2
t (δ)√
λt

+ γt(δ)
)2

= βt(δ)2 (Lemma 2.D.1) .

proving that θ ∈ Ct(δ)⇒ θ ∈ Cct (δ) and therefore Ct(δ) ⊆ Cct (δ). We now prove the second part
of Corollary 2.3.2. We will assume that {θ? ∈ Ct(δ)} which happens with probability at least
1− δ. We rely on the following second-order Taylor expansion. For all θ ∈ Cct (δ):

Lt(θ) = Lt(θ?) + (θ − θ?)T∇Lt(θ?) + ‖θ − θ?‖2G̃t(θ?,θ)

Therefore:

Lt(θ)− Lt(θ?)− (θ − θ?)T∇Lt(θ?) = ‖θ − θ?‖2G̃t(θ?,θ)

≥ (2 + 2S)−1 ‖θ − θ?‖2Ht(θ?) (Eq. (1.29))

which can be rewritten as:

‖θ − θ?‖2Ht(θ?) ≤ (2 + 2S) |Lt(θ)− Lt(θ?)|+ (2 + 2S)
∣∣∣(θ − θ?)T∇Lt(θ?)

∣∣∣

≤ 2(2 + 2S)βt(δ)2 + (2 + 2S)
∣∣∣(θ − θ?)T∇Lt(θ?)

∣∣∣ (θ, θ? ∈ Cct (δ))
≤ 2(2 + 2S)βt(δ)2 + (2 + 2S) ‖θ − θ?‖Ht(θ?) ‖∇Lt(θ?)‖H−1

t (θ?)

≤ 2(2 + 2S)βt(δ)2 + (2 + 2S)γt(δ) ‖θ − θ?‖Ht(θ?)

where we last used:

‖∇Lt(θ?)‖H−1
t (θ?) =

∥∥∥∥∥gt(θ∗)−
t−1∑

s=1
rs+1as

∥∥∥∥∥
H−1

t (θ?)

=
∥∥∥gt(θ?)− gt(θ̂t)

∥∥∥
H−1

t (θ?)

≤ γt(δ) . (θ? ∈ Ct(δ))
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To sum-up, we have the following polynomial inequality on ‖θ − θ?‖Ht(θ?):

‖θ − θ?‖2Ht(θ?) ≤ 2(2 + 2S)βt(δ)2 + (2 + 2S)γt(δ) ‖θ − θ?‖Ht(θ?) .

Solving it (cf. Proposition B.1) yields:

‖θ − θ?‖Ht(θ?) ≤ (2 + 2S)γt(δ) + 2
√

1 + Sβt(δ) .

Finally recall λt = d log(2 + t/δ) we obtain the following scalings:

γt(δ) = O(
√
d log(t/δ)) ,

βt(δ) = γt(δ) + γ2
t (δ)/

√
λt = O(

√
d log(t/δ)) ,

and therefore we obtain that ∀θ ∈ Cct (δ):

‖θ − θ?‖Ht(θ?) = O
(√

d log(t/δ)
)
.

�

2.D.1 Proof of Lemma 2.D.1

Lemma 2.D.1. Let δ ∈ (0, 1]. For all θ ∈ Ct(δ):
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
G−1

t (θ,θ̂t)
≤ γ2

t (δ)√
λt

+ γt(δ) .

Proof. Note that thanks to Eq. (1.26) we have:

Gt(θ, θ̂t) =
t−1∑

s=1
α(as, θ, θ̂t)asaT

s + λtId

�
t−1∑

s=1

(
1 + |aT

s (θ − θ̂t)|
)−1

µ̇(aT
s θ)asaT

s + λtId ( Lemma 1.B.1)

�
t−1∑

s=1

(
1 + ‖as‖G−1

t (θ,θ̂t)

∥∥∥θ − θ̂t
∥∥∥

Gt(θ,θ̂t)

)−1
µ̇(aT

s θ)asaT
s + λtId (Cauchy-Schwarz)

�
(

1 + λ
−1/2
t

∥∥∥θ − θ̂t
∥∥∥

Gt(θ,θ̂t)

)−1 t−1∑

s=1
µ̇(aT

s θ)asaT
s + λtId (Gt(θ, θ̂t) ≥ λtId)

�
(

1 + λ
−1/2
t

∥∥∥θ − θ̂t
∥∥∥

Gt(θ,θ̂t)

)−1
(
t−1∑

s=1
µ̇(aT

s θ)asaT
s + λtId

)

=
(

1 + λ
−1/2
t

∥∥∥θ − θ̂t
∥∥∥

Gt(θ,θ̂t)

)−1
Ht(θ)

=
(

1 + λ
−1/2
t

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

G−1
t (θ,θ̂t)

)−1
Ht(θ) (Eq. (1.21))

Using this inequality, we therefore obtain that:
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
2

G−1
t (θ,θ̂t)

≤
(

1 + λ
−1/2
t

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

G−1
t (θ,θ̂t)

)∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

2

H−1
t (θ)

≤ λ−1/2
t γ2

t (δ)
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
G−1

t (θ,θ̂t)
+ γ2

t (δ) (θ ∈ Ct(δ))
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Solving this polynomial inequality in
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
G−1

t (θ,θ̂t)
(cf. Proposition B.1) yields :

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

G−1
t (θ,θ̂t)

≤ γt(δ)2/
√
λt + γt(δ)

which proves the announced result. �

Appendix 2.E Proof of Theorem 2.4.1

Theorem 2.4.1 (Bernstein-like tail-inequality for weighted self-normalized martingales). Let
T be a known integer and {Ft}Tt=1 a filtration. Let {at}Tt=1 be a stochastic process on B2(0, 1)
such that at is Ft-measurable. Let {ηt}Tt=2 be a martingale difference sequence such that ηt+1
is Ft+1-measurable. Let {wt}Tt=1 a sequence of weights satisfying Assumption 2.4.1 and {λt}Tt=1
be a deterministic, strictly positive sequence of regularization terms. Furthermore, assume that
conditionally on Ft we have |ηt+1| ≤ σ a.s. and denote v2

t = E
[
η2
t+1|Ft

]
. For all t ∈ [T ] define:

H̃t =
t−1∑

s=1
w2
sv

2
sasa

T
s + λtId and St =

t−1∑

s=1
wsηs+1as .

Then for any δ ∈ (0, 1] and any fixed t ∈ [T ]:

P
(
‖St‖H̃−1

t
≤
√
λt

2σwt−1
+ 2σwt−1√

λt
log

(
2d det(H̃t)1/2

δλ
d/2
t

))
≥ 1− δ .

Proof. Let t be a fixed round and let M t
s(ξ) for ξ ∈ Rd and 1 ≤ s ≤ t be defined as

M t
s(ξ) = exp

(
1

σwt−1
ξTSs −

1
σ2w2

t−1
ξTH̄sξ

)
,

with Ss = ∑s−1
u=1wuηu+1au and H̄s = ∑s−1

u=1w
2
uv

2
u+1aua

T
u where v2

u = E[η2
u|Fs]. When s = t,

we will use the notation Mt for M t
t . A direct application of Lemma 2.2.1 yields that for all

ξ ∈ Bd(0, 1) and 2 ≤ s ≤ t and under Assumption 2.4.1;

E
[
M t
s(ξ)|Fs−1

]
≤M t

s−1(ξ) a.s .

Hence, for all 1 ≤ s ≤ t and ξ ∈ Bd(0, 1) we have E [Mt(ξ)] ≤ E
[
M t
s(ξ)

] ≤ E
[
M t

1(ξ)
] ≤ 1.

Further for 1 ≤ s ≤ t define

M̄ t
s =

∫

ξ
M t
s(ξ)dhs(ξ) ,

where hs is the density of an isotropic normal distribution of precision 2λs
σ2w2

t−1
truncated on

Bd(0, 1). Following a similar reasoning as in the proof of Corollary 2.2.2 one easily obtains that
E[M̄ s

t ] ≤ 1 and in particular for s = t. From there applying the maximal inequality and following
the proof of Theorem 2.2.1 to compute M̄t yields the announced result.

�



Chapter 3

Locality-Sensitive Algorithms for
GLBs

In this chapter we apply our new confidence set from Chapter 2 to the design of improved self-
concordant GLB algorithms. We introduce two algorithms which both rely on this enhanced
confidence set but differ in how they ensure optimism (either through exploration bonus or
parameter-search). For both algorithms we prove regret upper-bounds that tell a much more
nuanced story about the effects of non-linearity. Such effects are indeed deferred to a second-
order term of the regret, tied to a transitory regime during which the algorithms search for
highly rewarding areas of the action set. The regret suffered during this phase is still negatively
impacted by the non-linearity but becomes negligeable for large horizons as the algorithms enter
a permanent regime. Non-linearity then no longer plays a role; only the reward sensitivity
around the optimal action does. In addition to such a contrasting conclusion, our algorithms
display a clear improvement over previous approaches as they enjoy regret upper-bounds that are
exponentially smaller w.r.t problem-dependent constants. The end of the chapter is dedicated
to the Logistic Bandit setting, for which we identify configurations where non-linearity does not
impact the transitory phase. This ultimately removes its detrimental effects from the regret
bounds, even for short horizons. Finally, we derive a problem-dependent lower bound for the
Logistic Bandit, proving that in the permanent regime our algorithm are minimax-optimal w.r.t
the dimension d, the horizon T and the constant κµ that embodies the effects of non-linearity.
We conclude this chapter with some numerical experiments illustrating our theoretical findings.
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In this chapter we only consider self-concordant GLBs - i.e for which Assumption 1.4.1 holds.

3.1 Tighter and local exploration bonuses
In this section we present GLM-UCB+, an improved algorithm for self-concordant GLBs. It mimics
the approach of GLM-UCB and resorts to exploration bonuses to enforce optimism and drive
exploration. It leverages our improved confidence set from Theorem 2.3.1:

Ct(δ) =
{
θ ∈ Θ,

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

H−1
t (θ)

≤ γt(δ)
}
,

to design smaller exploration bonuses. It therefore enjoys improved theoretical guarantees with
finer dependencies w.r.t to the problem-dependent constants characterizing the level of non-
linearity. Recall that to enjoy a reduced scaling of γt(δ) (w.r.t d and t) we set the regularization
parameters to λt = d log(2 + t) for t ≥ 1.

3.1.1 Algorithm and regret upper-bound

Algorithm. Similarly to GLM-UCB, the algorithm GLM-UCB+ relies on a “projected” version of
the MLE estimator θ̂t. We define the set Wt of information-preserving parameters:

Wt =
{
θ ∈ Θ, µ̇(aT

s θ) ≥ min
θ′∈Cs(δ)

µ̇(aT
s θ
′) for all s ∈ [t]

}
, (3.1)

and project θ̂t back to this set with an map preserving its learning guarantees. Formally:

θ̃t ∈ arg min
θ∈Wt

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥

H−1
t (θ)

. (3.2)

This program is well-defined by the continuity of the objective and the non-emptiness of Wt.
Define the exploration bonus:

εt(a) := (2 + 4S)µ̇(aTθ̃t)γt(δ) ‖a‖H−1
t (θ̃t) + (4 + 8S)κ̄µγ2

t (δ) ‖a‖2V−1
t
, (3.3)

which unlike the exploration function of GLM-UCB does depend on the precise location of the
estimator θ̃t. GLM-UCB+ prescribes the following strategy:

play at ∈ arg max µ(aTθ̃t) + εt(a) . (3.4)

The pseudo-code is provided in Algorithm 4.

Theoretical guarantees. The following theorem (informally stated, see Section 3.1.3 for the
formal statement) ensures that GLM-UCB+ enjoys a sub-linear regret with improved problem-
dependent dependencies.

Theorem 3.1.1 (Regret of GLM-UCB+, informal). The regret of GLM-UCB+ satisfies:

Regretθ?(T ) = Õ
(√

µ̇(aT
? θ?)T + κ̄µ

)
with high probability.
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Algorithm 4 GLM-UCB+
input: Arm set A, regularization coefficients {λt}t, failure level δ, admissible parameter set Θ.

Compute the reward sensitivity constants ¯̀
µ, L̄µ and κ̄µ. . initialization

Set V1 ← (λ1/¯̀
µ)Id, H1 ← λ1Id, θ̂1 ← 0d and θ̃1 ← 0d.

for t ∈ [1, T ] do
Compute the exploration bonuses {εt(a)}a∈A according to Eq. (3.3).
Play the arm at according to Eq. (3.4). . planning
Observe reward rt+1.
Update the estimator θ̂t+1 and design matrix Vt+1. . learning
Compute θ̃t+1 according to Eq. (3.2) and compute Ht+1 ← Ht+1(θ̃t+1).

end for

The regret therefore decomposes in two terms; (1) a first-order term which dominates when the
horizon T is large and (2) a second order term which dominates at the beginning of the experi-
ment. The first-order term still scales as

√
T but shows refined problem-dependent dependencies

as it involves the slope of the effective reward signal at the optimal action a?. This therefore
comes as a dramatic improvement over previous works which regret scale with κ̄µ � µ̇(aT

? θ?).
This is particularly well-illustrated in the LogB setting as demonstrated below. The dependency
in κ̄µ is deferred to the second order-term and therefore is only additive, not multiplicative.

( ) Consider the Logistic Bandit problem where A = Bd(0, 1). In this configuration we have
µ̇(aT

? θ?) = `µ ≈ exp(−‖θ?‖); the regret of GLM-UCB+ therefore satisfies for T large enough:

Regretθ? = Õ
(
exp(−‖θ?‖ /2)

√
T
)

w.h.p .

In other words GLM-UCB+ brings an exponential acceleration over previous work which regret
bounds in the same problem scale as Õ(exp(S)

√
T ) where S ≥ ‖θ?‖.

Remark 3.1.1 (Another illustration: the Poisson Bandit case). The conclusion remains the
same for the Poisson bandit; the regret of GLM-UCB scales with exp(2S) while the regret of
GLM-UCB+ scales with exp(‖θ?‖ /2) for T large enough.

3.1.2 Discussion

Impact of non-linearity. The regret bound of Theorem 3.1.1 tells a much more nuanced
story about the impact of non-linearity. It indeed proves that in the long-term regime the
non-linearity of the reward signal does not impact the performance. What matters is only the
sensitivity of the reward function around the best action a?. Intuitively this makes a lot of sense;
any algorithm that enjoys a sub-linear regret (w.r.t the horizon T ) must eventually play most
of its actions “close” to a?. In this regime the observed reward signal therefore behaves like a
linear bandit with slope µ̇(aT

? θ?); if this quantity is small (resp. large) then the reward function
is flat (resp. peaked) and playing sub-optimal arms results in a small (resp. large) instantaneous
regret. The effects of non-linearity mostly show up in the second-order term which still scales
with κ̄µ. This suggests that in a highly non-linear environment, discovering (approximately) a?
is tedious and reaching the long-term regime requires a long burn-in phase.

Information-preserving projection. A singular feature of GLM-UCB+ is the involvement
of the set of information preserving estimators Wt. It is tightly linked to the form of the
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exploration bonus εt(·). Note that the first term of the latter (cf. Eq. (3.3)) directly depends
on the estimator θ̃t. As we mentioned before, the exploration bonus for each action a ∈ A
has to smoothly vanish if one expects to enjoy sub-linear regret bounds. Indeed as information
about a is gathered, the uncertainty about its reward diminishes and exploration “around” this
arm should vanish. Now, the first term of the exploration bonus from Eq. (3.3) evolves with
µ̇(aTθ̃t)aTH−1

t (θ̃t)a. If θ̃t was unconstrained this quantity could increase; updating θ̃t could
decrease some eigenvalues of Ht(θ̃t), “destroying” information that was previously gathered in
the directions of the corresponding eigenvectors. Projecting θ̃t on Wt effectively avoids such
behavior as it allows to lower-bound (in the Loewner order sense) Ht(θ̃t) by a matrix which
eigenvalues are strictly increasing over time; in other words, it preserves information acquired
in the past.

θ̃t ∈ Wt =⇒ Ht(θ̃t) � Lt :=
t−1∑

s=1
µ̇(aT

s θ̄s)asaT
s + λtId ,

where θ̄s := arg minθ∈Cs µ̇(aT
s θ). This guarantees diminishing bonuses or equivalently that the

bonuses cumulates at a correct rate. This intuitive argument is formalized in Lemma 3.1.2.

Remark 3.1.2 (An alternative formulation forWt). The expression for the information-preserving
set from Eq. (3.1) is rather intuitive but complex to handle in a practical experiment. For any
inverse link function which derivative µ̇ achieves its extremum in its tails (such as in the Logistic
and Poisson case) it can be trivially simplified. For instance in the LogB case;

Wt =
{
θ ∈ Θ, |aT

s θ| ≤ max
θ′∈Cs

|aT
s θ
′| for all s ∈ [t]

}
.

In this case Wt therefore appears as a convex set made up of 2 min(|A|, t− 1) linear constraints
(plus the convex constraint θ ∈ Θ).

Tractability. From a practical standpoint and despite Wt being convex in practical cases of
interest GLM-UCB+ suffers an important drawback because of the projection step of Eq. (3.2). It
indeed requires running a non-convex optimization routine at every round since:

θ 7→
∥∥∥gt(θ)− gt(θ̂t)

∥∥∥
H−1
t (θ)

,

is non-convex. This drawback is shared with the approach of Filippi et al. (2010) (their pro-
jection map is also non-convex) but its impact is more burdensome here. Indeed GLM-UCB can
discard the projection step whenever θ̂t ∈ Θ which, in practice, happens at almost every round.
For GLM-UCB+ the projection step can only be discarded when θ̂t ∈ Wt which is less frequent
(practically this requires θ̂t ∈ Cs(δ) for every s ∈ [t]). The projection step will be removed in
the following section where we design a parameter-search alternative to GLM-UCB+.

3.1.3 Proof of the regret bound

Below we state a more formal version of Theorem 3.1.1.

Theorem 3.1.1 (Regret of GLM-UCB+, formal). Let δ ∈ (0, 1]. With probability at least 1 − δ
the regret of GLM-UCB+ satisfies:

Regretθ?(T ) = O
(
d log(T/δ)

√
T µ̇(aT

? θ?) + κ̄µd
2 log(T/δ)2

)
.

Notice that the scaling of the first-order term w.r.t the dimension T and d still match with the
d log(T )

√
T rate obtained in the linear case. We now proceed with the proof.
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Regret and prediction error.

The proof relies on the following result tying the regret to the sum of bonuses on the trajectory
{at}Tt=1 when the bonus function upper-bounds the prediction error. This result is classical and
the proof deferred to Appendix 3.A.

Proposition 3.1.1 (Regret and exploration bonus). Recall the prediction error ∆t(a) = |µ(aTθ̃t)−
µ(aTθ?)|. If for all a ∈ A and t ∈ [T ] we have εt(a) ≥ ∆t(a) then:

Regretθ?(T ) ≤ 2
T∑

t=1
εt(at) .

The goal is therefore to design tight upper-bounds on the prediction error. This is achieved by
leveraging our improved confidence set which yields the bonus function of Eq. (3.3). To keep
the proof concise we defer the demonstration of this result to Appendix 3.B.

Lemma 3.1.1 (Confident prediction-error upper-bound). Under the event {θ? ∈ Ct(δ), ∀t ≥ 1}
for any a ∈ A and t ≥ 1:

∆t(a) ≤ 2(1 + 2S)µ̇(aTθ̃t) ‖a‖H−1
t (θ̃t) γt(δ) + 2(1 + 2S)2κ̄µγ

2
t (δ) ‖a‖2V−1

t
= εt(a) .

Combining Proposition 3.A.1 and Lemma 3.1.1 yields that under the event {θ? ∈ Ct(δ),∀t ≥ 1}
the regret decomposes in two terms:

Regretθ?(T ) ≤ 4(1 + 2S)γ̄T (δ)
T∑

t=1
µ̇(aT

t θ̃t) ‖at‖H−1
t (θ̃t)

︸ ︷︷ ︸
R1(T )

+4(1 + 2S)2κ̄µγ̄T (δ)2
T∑

t=1
‖at‖2V−1

t

︸ ︷︷ ︸
R2(T )

, (3.5)

where γ̄T (δ) = maxt∈[T ] γt(δ).

Bounding R2(T).

The second term is easily bounded thanks to the Elliptical Potential lemma (see Lemma B.3):

R2(T ) ≤ 2d log
(
λT + T ¯̀

µ/d
)
. (3.6)

The second term in Eq. (3.5) therefore scales as log2(T ) and is a dominated term in the final
regret bound. It shows a multiplicative dependency in κ̄µ because we used a uniform bound on
µ̈ (which itself is dominated by µ̇) over A×Θ. This however allowed for R1(T ) (which will turn
out to be the dominating term of the regret) to depend only on the estimator θ̃t.

Bounding R1(T).

The last step of the proof requires bounding R1(T ). By simple manipulations one can arrive to
the following inequality (the proof can be found in Appendix 3.C) where θ̄t := arg minθ∈Ct µ̇(aT

t θ):

R1(T ) ≤
T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) + 2

√
1 + 2Sκ̄µγ̄T (δ)R2(T ) . (3.7)

Let us focus on the first term. Because for all t ≥ 1, θ̃t ∈ Wt we have that by definition
µ̇(aT

t θ̃t) ≥ µ̇(aT
t θ̄t); this yields the following matrix lower bound on Ht(θ̃t):

Ht(θ̃t) � Lt :=
t−1∑

s=1
µ̇(aT

s θ̄s)asaT
s + λtId =

t−1∑

s=1
āsā

T
s + λtId ,
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where for all s ∈ [T ] we defined ās =
√
µ̇(aT

s θ̄s)as. Therefore:

T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) ≤

T∑

t=1

√
µ̇(aT

t θ̄) ‖āt‖L−1
t

. (3.8)

We are almost done but are faced with a slight technical difficulty. Indeed after applying the
Cauchy-Schwarz inequality we obtain:

T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) ≤

√√√√
T∑

t=1
µ̇(aT

t θ̄t)

√√√√
T∑

t=1
‖āt‖2L−1

t
.

It is tempting to bound the most r.h.s term by a direct application of the Elliptical Potential
lemma; however ‖āt‖2 is bounded at worst by L̄µ which with a naive application of the Elliptical
Potential will appear multiplicatively in the bound on this first-order term. This is innocent for
GLBs with bounded Lipschitz constant (e.g the LogB for which L̄µ ≤ 1/4) but it is extremely
unpleasant for some other models (e.g the Poisson Bandit for which L̄µ ≈ exp(S)) as this
dependency will appear in the regret bound’s leading term (which is exactly what we are trying
to avoid). Fortunately this is merely an analysis issue, easily circumvented by an adapted
decomposition which again defers this annoying dependency to a small additive term. We state
this refined result in the lemma below, which proof is deferred to Appendix 3.D.

Lemma 3.1.2. The following holds:

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
≤
√

2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) + 2dL̄2
µ log(λT + L̄µT/d) .

To simplify matter and reduce clutter, in what follows we ignore the additional term scaling
with L̄2

µ (the detail-oriented reader can check that this term is even a “third-order” term as it
is dominated by the final regret bound’s second order term). We will therefore use:

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
≤
√

2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) . (3.9)

To finish bounding R1(T ) we only have left to bound ∑T
t=1 µ̇(aT

t θ̄t). Note that if θ? ∈ Ct(δ) by
definition of θ̄t we have µ̇(aT

t θ̄t) ≤ µ̇(aT
t θ?). Therefore under the event {θ? ∈ Ct(δ) for all t ≥ 1};

T∑

t=1
µ̇(aT

t θ̄t) ≤
T∑

t=1
µ̇(aT

t θ?) ≤ T µ̇(aT
? θ?) + Regretθ?(T ) . (3.10)

The proof for this last inequality relies on a Taylor-expansion and the self-concordance property;
it is deferred to Appendix 3.E. Combining Eq. (3.8), Eq. (3.9) and Eq. (3.10) along with the
inequality

√
a+ b ≤ √a+

√
b for all a, b > 0 yields;

T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) ≤

√
2d log (λT + T/d)

(√
T µ̇(aT

? θ?) +
√
Regretθ?(T )

)
.

Assembling this with Eq. (3.7) we obtain:

R1(T ) ≤
√

2d log
(
λT + L̄µT/d

)(√
T µ̇(aT

? θ?) +
√
Regretθ?(T )

)
+ 2
√

1 + 2Sκ̄µγ̄T (δ)R2(T ) .

(3.11)
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Finishing the bound.

Assembling the regret decomposition of Eq. (3.5) along with the bounds on R1(T ) and R2(T )
(respectively from Eq. (3.11) and Eq. (3.6)) along with straight-forward upper-bounding yields:

Regretθ?(T ) ≤ 4
√

2f(T )
(√

T µ̇(aT
? θ?) +

√
Regretθ?(T )

)
+ 24κ̄µf(T )2 ,

where we defined f(T ) := (1+2S)γ̄T (δ)
√
d log(λT + L̄µT/d). This is a second-order polynomial

inequation with unknown
√
Regretθ?(T ); solving it (see Proposition B.1) and using (a + b)2 ≤

2a2 + 2b2 to simplify yields;

Regretθ?(T ) ≤ 8
√

2f(T )
√
T µ̇(aT

? θ?) + 64f(T )2 + 48κ̄µf(T )2.

The claimed scaling is easily obtained by recalling that γt(δ) = O(
√
d log(t/δ)) which implies

that f(T ) = O(d log(T/δ)). Recall that this proof checks when the event {θ? ∈ Ct(δ) for all t ≥
1} which holds with probability at least 1− δ.
Remark 3.1.3 (The contextual case). This analysis shows that the story is similar when arm-
sets are time-varying ( e.g in the contextual bandit setting). Straight-forward manipulations
shows that the term

√
T µ̇(aTθ?) is then replaced by

√
T
√

(1/T )∑T
t=1 µ̇(aT

?,tθ?) where a?,t is the
best action at round t. In other words the local slope around the best action is replaced by the
“averaged” local slope.

3.2 The parameter-search alternative
In the previous section we introduced GLM-UCB+, which leverages the enhanced confidence set
Ct(δ) but mimics the original GLM-UCB algorithm by resorting to exploration-bonuses to enforce
optimism. We now study its parameter-search counterpart which directly finds an optimistic
parameter in Ct(δ) and plays greedily w.r.t to this parameter. We coin this algorithm OFU-GLB
for its resemblance to the OFUL algorithm of Abbasi-Yadkori et al. (2011). Note that in the
linear case, the exploration-bonus and parameter-search approaches are strictly equivalent; as
illustrated throughout this section this is no longer true with non-linear reward signals.

3.2.1 Algorithm and regret upper-bound

Algorithm. OFU-GLB plays according to the following simple strategy:
play at ∈ arg max

a∈A
max
θ∈Ct(δ)

aTθ .

The pseudo-code is provided in Algorithm 5; note that this algorithm does not requires to
compute the reward sensitivity constants but only needs knowledge of S.

Theoretical guarantees. Again we start with an informal statement to ease discussions.
Theorem 3.2.1 (Regret of OFU-GLB, informal). The regret of OFU-GLB satisfies:

Regretθ?(T ) = Õ(
√
µ̇(aT

? θ?)T + L̄µ/`µ) .

Compared to GLM-UCB+ the regret’s second-order term is reduced; it scales as L̄µ/`µ - recall that
`µ = maxa∈A µ̇(aTθ?) measures the effective minimum reward sensitivity (not the worst-case
over Θ). This bound already hints at the refined problem-dependent behavior of the parameter
search approach. Of course `µ ≥ ¯̀

µ so this second order term can be upper-bounded by Õ(κ̄µ)
to retrieve the regret upper-bound of GLM-UCB+.
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Algorithm 5 OFU-GLB
input: Arm set A, regularization coefficients {λt}t, failure level δ, admissible parameter set Θ.

Set H1 ← λ1Id, θ̂1 ← 0d.
for t ∈ [1, T ] do
Solve at ∈ arg maxAmaxθ∈Ct(δ) aTθ. . planning
Play the arm at and observe reward rt+1.
Update the estimator θ̂t+1 and the confidence interval Ct(δ). . learning

end for

( ) The above comment is well illustrated in the LogB case. Let A = B2(0, 1); then the
second-order term of GLM-UCB+’s regret upper bound scale with exp(S) but “only” exp(‖θ?‖)
for OFU-GLB, which can be much smaller. Note that this is not a by-product of a loose analysis
as for GLM-UCB+ this scaling is already hard-coded in the exploration bonus.

3.2.2 Discussion

Impact of non-linearity. The conclusions brought by this regret bound are essentially the
same as for GLM-UCB+; the effect of non-linearity is pushed in a second-order term of the regret,
conceptually corresponding to a burn-in phase. In Section 3.3 we will leverage OFU-GLB to study
more in details the nature of this second-order term.

Practical advantages. OFU-GLB has several practical advantages over GLM-UCB+; it does not
require computing the reward sensitivity constants L̄µ, ¯̀

µ and κ̄µ and more importantly does
not require the expensive maintaining of the information-preserving set Wt. We argued in
Section 3.1.2 that with an exploration-bonus approach projecting on such a set is necessary. This
is no longer the case with a parameter-search approach which allows to quantify the acquired
information through the metric Ht(θ?) which is naturally increasing with t. There is still an
important drawback to OFU-GLB as the constraint θ ∈ Ct(δ) in the planning objective is not
convex. This will be circumvented with minor impact on the regret bound in Section 3.2.4.

3.2.3 Proof of the regret bound

Theorem 3.2.2 (Regret of OFU-GLB, formal). Let δ ∈ (0, 1]. With probability at least 1− δ the
regret of OFU-GLB satisfies:

Regretθ?(T ) = O
(
d log(T/δ)

√
T µ̇(aT

? θ?) + (L̄µ/`µ)d2 log(T/δ)2
)
.

The demonstration is naturally similar to the proof of Theorem 3.1.1 laid out in Section 3.1.3;
it is however much neater. Throughout this whole proof we work under the event {θ? ∈
Ct(δ) for all t ≥ 1} which holds with probability at least 1− δ. Define the optimistic parameter
θt as follows:

(at, θt) := arg max
a∈A,θ∈Ct(δ)

aTθ .

Since θ? ∈ A we therefore have by optimism that aT
? θ? ≤ aT

t θt. Using this along with a second
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order Taylor expansion yields the following set of inequalities:

Regretθ?(T ) ≤
T∑

t=1
µ(aT

t θt)− µ(aT
t θ?) (µ↗)

≤
T∑

t=1
µ̇(aT

t θ?)aT
t (θt − θ?) + L̄µ[aT

t (θt − θ?)]2/2 (|µ̈| ≤ µ̇ ≤ L̄µ)

≤
T∑

t=1
µ̇(aT

t θ?) ‖at‖H−1
t (θ?) ‖θt − θ?‖Ht(θ?) (Cauchy-Schwarz)

+ (L̄µ/2)
T∑

t=1
‖at‖2H−1

t (θ?) ‖θt − θ?‖
2
Ht(θ?)

Easy computations involving the self-concordance property yield the following deviation bound
(for completeness the proof is deferred to Appendix 3.F):

‖θt − θ?‖Ht(θ?) ≤ 2(1 + 2S)γt(δ) . (3.12)

Plugging this in the above regret bound yields;

Regretθ?(T ) ≤ 2(1 + 2S)γ̄T (δ)
T∑

t=1
µ̇(aT

t θ?) ‖at‖H−1
t (θ?) + 2(1 + 2S)2L̄µγ̄T (δ)2

T∑

t=1
‖at‖2H−1

t (θ?) .

The second term is easily bounded by using Ht(θ?) � `µVt and the Elliptical Lemma. The
first-order term can be bounded thanks to Lemma 3.1.2 by defining this time āt =

√
µ(aT

t θ?)at
which yields (again, we will omit the third-order term in the remaining of this proof to reduce
clutter):

T∑

t=1
µ̇(aT

t θ?) ‖at‖H−1
t (θ?) ≤

√
2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ?) .

The remaining term is bounded as in the proof of Theorem 3.1.1 by showing:

T∑

t=1
µ̇(aT

t θ?) ≤ T µ̇(aT
? θ?) + Regretθ?(T ) .

This yields the following second-order polynomial inequation involving the regret itself;

Regretθ?(T ) ≤ 2
√

2f(T )(
√
Tµ(aT

? θ?) +
√
Regretθ?(T )) + 4(L̄µ/`µ)f(T )2 .

Solving the above and using f(T ) = O(d log(T/δ)) leads to the announced result.

3.2.4 A tractable algorithm: convex relaxation

We finish this section on OFU-GLB by introducing a tractable alternative in the finite arm-set
case. As mentioned earlier the planning phase of OFU-GLB involves solving for some given a:

max
θ∈Ct(δ)

aTθ .
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Algorithm 6 OFU-GLB-r
input: Finite arm-set A, regularization coefficients {λt}t, failure level δ, admissible parameter
set Θ.
Set H1 ← λ1Id, θ̂1 ← 0d.
for t ∈ [1, T ] do
for a ∈ A do
Solve θa ← arg maxθ∈Cct (δ) a

Tθ.
end for
Play at ∈ arg maxA aTθa. . planning
Play the arm at and observe reward rt+1.
Update the estimator θ̂t+1. . learning

end for

Since Ct(δ) is in all generality non-convex there exist no standard approach for provably ap-
proximately solving this program. This is easily circumvented by replacing Ct(δ) by its convex
relaxation Cct (δ) provided in Corollary 2.3.2:

Cct (δ) =
{
θ ∈ Θ, Lt(θ)− Lt(θ̂t) ≤ βt(δ) = γt(δ) + γt(δ)2/

√
λt
}
.

The planning of the resulting algorithm which we coin OFU-GLB-r writes:

play at ∈ arg max
a∈A

max
θ∈Cct (δ)

aTθ .

This can be solved efficiently when |A| is finite by exhaustive search over A since maxθ∈Cct (δ) a
Tθ

is a convex program (θ ∈ Cct (δ) is a convex constraint) which can be solved to arbitrary precision.
The pseudo-code for this algorithm is provided in Algorithm 6. This convex relaxation comes at
virtually no cost on the regret bound; indeed thanks to Corollary 2.3.2 we know that (1) Cct (δ) is
an anytime confidence set for θ? at level at least 1− δ, which ensures that with high probability
OFU-GLB-r plays according to an optimistic couple (at, θt). Furthermore Corollary 2.3.2 provides
a direct alternative to Eq. (3.12) since for any θ ∈ Cct (δ) we have (2):

‖θ − θ?‖Ht(θ?) ≤ (2 + 2S)γt(δ) + 2
√

1 + 2Sβt(δ) = O
(√

d log(t)
)
.

Those two points are the main building blocks behind the proof of OFU-GLB’s regret bound. It
can be exactly reproduced for bounding the regret of OFU-GLB-r, which enjoys a similar regret
bound where (1 + 2S)γt(δ) is replaced by (2 + 2S)γt(δ) + 2

√
1 + 2Sβt(δ) - which has the same

scaling w.r.t to d and log(T ).

3.3 ( ) Non-linearity and transitory regret in LogB
Non-linearity and the transitory regime. The regret analysis of GLM-UCB+ and OFU-GLB
bring forward the same conclusions on the effects on non-linearity. In particular they highlight
that in a permanent regime (T large enough) the non-linearity no longer plays a role in the
exploration-exploitation trade-off; what matters is only the local sensitivity of the reward func-
tion around the best arm. This long-term regime conceptually corresponds to the phase the
algorithm enters once the optimal action is approximately identified. The non-linearity affects
a dominated term in the regret, scaling linearly with the reward sensitivity ratio κ̄µ. It is ap-
pealing to think of this regret term as tied to a transitory regime during which the algorithm
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performs a somewhat uniform exploration with the goal of discovering the most rewarding area
of the arm set. The first goal of this section is to formalize this intuitive characterization in
the LogB case. The presence of κ̄µ in the regret’s second-order term implies that the more
non-linear the reward signal the longer this takes and the harder approximately locating a? is.
The second goal of this section is to show that in the LogB case this conclusion is extremely
worst-case and that for many instances the regret incurred during the transitory phase can be
bounded independently of κ̄µ - which ultimately removes any trace of the non-linearity in the
regret bound.

On the Bayesian regret lower-bound of (Dong et al, 2019). The authors of (Dong et al.,
2019) consider LogB instances for which there is only one “good” arm (aTθ?>0) and many arms
in the left-tail of the reward signal (aTθ? < 0). Their lower-bound is essentially built on the
idea that for such an arm-set and given any horizon T , for any policy it exists a sufficiently
non-linear LogB problem (κµ large enough) such that the average number of rounds before the
algorithm plays the only good arm is Ω(T ). This construction corroborates our interpretation
of the transitory regime described hereinbefore as it effectively links the level of non-linearity
with a burn-in phase during which the agent has to learn to discard low-rewarding arms. In
such worst-case instances the problem’s structure is of little help because all low-rewarding arms
lead with high probability to the same null reward. A direct implication of this construction is
that for any policy there exists an arbitrarily non-linear LogB problem such that its Bayesian
regret is Ω(T ). This suggests that in all generality there is no hope of removing κµ from the
regret’s second-order term as for the two bounds to be coherent, this term must diverge when
κµ → ∞. This conclusion is however particularly worst-case; the effects of non-linearity being
highly problem-dependent it is natural to wonder if it still holds for arm-sets that evade the
construction of Dong et al. (2019). In the rest of this section we answer this question by the
negative; for many “reasonable” arm-sets the second-order term of the regret scales independently
of κµ.

3.3.1 Transitory regret and detrimental arms

We introduce below the notion of detrimental arms; conceptually they are arms with large
sub-optimality gaps that carry little information.

Definition 3.3.1 (Detrimental arms).

A− :=

∣∣∣∣∣∣∣

{
a ∈ A, aTθ? ≤ −1

}
if aT

? θ? > 0 ,
{
a ∈ A, µ̇(aTθ?) ≤ µ̇(aT

? θ?)/2
}

otherwise.

A− contains arms a such that µ(aTθ?)� µ(aT
? θ?) (large gap) and µ̇(aTθ?) ≈ 0 (small conditional

variance). They lay in the far left-tail of the logistic function: their associated reward realization
are almost always 0. We provide an illustration of A− in Fig. 3.1.

Remark 3.3.1 (On the definition of A−). We use two alternative definitions for A− depending
on the sign of aT

? θ?. This is linked to the two regimes of the logistic function: convex on R− and
concave on R+. Detrimental arms suffer from the same negative properties irrespectively of the
considered case. For the case aT

? θ? > 0 the reference value aTθ? ≤ −1 is rather arbitrary; any
value aTθ? ≤ −c where c� ‖θ?‖ works similarly.

The following theorem provides a new regret bound for OFU-GLB with a refined second order
term which highlights the role of the detrimental arms.
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? θ?mina∈A aTθ?mina∈A aTθ?mina∈A aTθ? aTθ

E[r|a]

AAAAAA

θ?θ?θ?

A−A−A−

(a) Assymetrical arm-set.
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(b) Symmetrical arm-set (unit-ball).

Figure 3.1: Graphical illustration of the detrimental arms A−.

Theorem 3.3.1. On any LogB problem the regret of OFU-GLB satisfies with probability at least
1− δ:

Regretθ?(T ) = Õ
(√

µ̇(aT
? θ?)T +

[
κµ ∧ µ(aT

? θ?)
T∑

t=1
1(at ∈ A−)

])
.

From Theorem 3.3.1 we can easily retrieve the bound of Theorem 3.2.2. It however leaves room
for improvement by stressing that the second order term is significantly smaller when detrimental
arms A− are discarded fast enough. This enforces the idea that it is fundamentally tied to an
initial burn-in phase after which the detrimental arms are no longer played.

Sketch of proof

We give below a sketch of proof for Theorem 3.3.1. The entire demonstration is deferred to
Appendix 3.G. By an exact second-order Taylor expansion of the regret;

Regretθ?(T ) =
T∑

t=1
µ̇(aT

t θ?)(a? − at)Tθ? +
T∑

t=1
ϑ̃t
(
(a? − at)Tθ?

)2
,

where we defined ϑ̃t =
∫ 1
v=0(1 − v)µ̈(aT

t θ? + v(a? − at)Tθ?)dv. The main idea of the proof is to
show that when at /∈ A− then ϑ̃t is small and therefore so is the resulting second order term.
For rounds where at ∈ A− we use a brutal bound to show that:

ϑ̃t
(
(a? − at)Tθ?

)2
1(at ∈ A−) ≤ Sµ(aT

? θ?)1(at ∈ A−) .

We now turn to the case at ∈ A+ = A \ A− and in this sketch of proof we restrict ourselves to
the case aT

? θ? > 0 so that A+ = {a ∈ A, aTθ? ≥ −1}. Thanks to the self-concordance property
and the concavity of µ on R+ (i.e µ̈(z) < 0 for z > 0) we can show the following bound:

ϑ̃t
(
(a? − at)Tθ?

)2
1(at ∈ A+) ≤ e1µ̇(aT

t θ?)
(
(a? − at)Tθ?

)2

≤ e1γt(δ)µ̇(aT
t θ?) ‖at‖2H−1

t (θ?) .
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Note that by the Elliptical Potential lemma ∑T
t=1 µ̇(aT

t θ?) ‖at‖2H−1
t (θ?) = O(d2 log(T )2) which is

independent of κµ. This yields the following bound on the regret’s second-order term:
T∑

t=1
ϑ̃t
(
(a? − at)Tθ?

)2
= O

(
T∑

t=1
1(at ∈ A−) + d2 log(T )

)
.

Following the proof of Theorem 3.2.2 to bound the first-order term eventually yields:

Regretθ?(T ) = Õ
(√

µ̇(aT
? θ?)T + µ(aT

? θ?)
T∑

t=1
1(at ∈ A−)

)
.

Taking the minimum between this bound and Theorem 3.2.2 provides the announced result.

3.3.2 Non-linearity in LogB: a blessing?

Length of the transitory phase. In worst-case configuration of the arm-set we cannot
guarantee that the regret incurred during the transitory phase is smaller than κµ; however for
more “reasonable” arm-sets it is safe to expect that the permanent regime is reached much
faster. We formalize this intuition in the following proposition by exhibiting arm-set structures
for which the transitory regime is short.
Proposition 3.3.1 (Length of transitory regime). Let {a1, . . . , aT } be generated by OFU-GLB on
a LogB problem with arm-set A. The following holds with high probability:

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) = Õ(d2 + dK) if |A−| ≤ K , (3.13)

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) = Õ(d3) if A = Bd(0, 1) . (3.14)

This result formalizes that OFU-GLB quickly discards detrimental arms when (3.13) there are
only a few or (3.14) the problem’s structure is symmetric. In such case the final regret bound is
oblivious to non-linearity;

Regretθ?(T ) = Õ
(√

µ̇(aT
? θ?)T

)
w.h.p .

While Proposition 3.3.1 only identifies two such case where the non-linearity does not affect the
length of the transitory regime, we expect this enjoyable property to hold for many “reasonable”
arm set structures - it breaks for fairly peculiar arm-set such as Dong et al. (2019)’s counter-
example or the arm-set of Fig. 3.1a. The intuition is that as soon as the detrimental arms are
few in number or in proportion OFU-GLB quickly discover “good” arms - which potentially carry
little information (small conditional variance) but which sub-optimality gaps are small (they lie
in the positive flat tail of the reward signal).
Remark 3.3.2 (On the superiority of the parameter-search approach in LogB). The results
presented in this section for OFU-GLB easily extends to OFU-GLB-r. They could also be extended to
GLM-UCB+ but at the price of a modified algorithmic design. Indeed the regret bound of GLM-UCB+
is tied to the amount of exploration which is hard-coded in its exploration bonus. Therefore to
obtain tight regret bounds this bonus must be re-computed for every arm-set A by re-deriving
a tight prediction error bound adapted to the arm-set’s geometry. This is not the case for the
parameter search approach as this step is pushed to analysis time and does not impact the effective
performance of the algorithm. In other words in the LogB setting (and virtually for all GLBs)
the parameter-search approach automatically adapts to the effective complexity of the problem
encoded in the arm-set’s geometry. This is not the case for its bonus-based counterpart.
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The unit ball case. The following result is obtained my merging Theorem 3.3.1 with Propo-
sition 3.3.1 and embodies the improvement over previous work obtained with our approach.

Corollary 3.3.1 (LogB unit ball regret bound). Consider a LogB problem with A = Bd(0, 1).
Then µ̇(aT

? θ?) ≤ exp(−‖θ?‖) and the regret of OFU-GLB on this problem satisfies w.h.p:

Regretθ?(T ) = Õ
(
exp(−‖θ?‖ /2)

√
T
)
.

This is an exponential improvement over the performance of GLM-UCB which regret bound on
the same problem is O(exp(‖θ?‖)

√
T ). Furthermore it tells a much different story about the

effects of non-linearity in LogB. Indeed in this particular configuration the level of non linearity
is directly tied to ‖θ?‖ as κµ ≥ 4 exp(‖θ?‖). Therefore the larger ‖θ?‖, the higher the level of
non-linearity of the reward signal, and by Corollary 3.3.1 the smaller the regret. In this case
the non-linearity is therefore beneficial for the regret minimization task which turns out to be
even easier than for its LB counterpart problem.

Remark 3.3.3. The conclusion on the effects of non-linearity detailed above has to be handled
with care has it holds only for the Logistic Bandit - the analysis conducted in the section heavily
leverages the specific properties of this model. In the Poisson Bandit setting it is likely that the
regret’s second-order term still scales linearly with the reward sensitivity ratio. Further, the first
order term scales with µ̇(aT

? θ?) which for the Poisson Bandit in the unit ball case evolves as
exp(‖θ?‖); the “exploding” behavior of the reward signal around the optimum still negatively im-
pacts the performance of our algorithms (although in a less dramatic fashion than for GLM-UCB).
This remark emphasizes the problem-dependent impacts of non-linearity; a thorough understand-
ing for a given problem requires a precise problem-dependent analysis (such as the one conducted
above for the LogB) . In other words not all GLBs are equal in face of non-linearity and to be
completely described, virtually each different GLB requires a dedicated analysis.

Sketch of proof

We provide here a sketch of proof for Eq. (3.13) from Proposition 3.3.1; the complete demon-
stration is deferred to Appendix 3.H. As usual we work under {∀t ≥ 1, θ? ∈ Ct(δ)}; this happens
with probability at least 1 − δ. We restrict this sketch of proof to the case aT

? θ? ≥ 0. In this
case detrimental arms have a large constant sub-optimality gap as for any a ∈ A−:

µ(aT
? θ?)− µ(aTθ?) ≥ µ(aT

? θ?)− µ(−1) ≥ 1/2− µ(−1) ≥ 1/5.

We can use this result to show that OFU-GLB plays detrimental arms only logarithmically often.
For any a ∈ A− let τa be the last time-step when a is played and Na the number of time a was
played over [T ]. By using the lower-bound on the sub-optimality gap for any a ∈ A−:

1/5 ≤ µ
(
aT
? θ?

)
− µ

(
aT
τaθ?

)

≤ µ
(
aT
τaθτaa

)
− µ

(
aT
τaθ?

)
(optimism)

≤ α(aτa , θτa , θ?)aT
τa(θτa − θ?) (mean-value theorem)

= α(aτa , θτa , θ?)aT
τaG

−1
τa (θτa , θ?) (gτa(θτa)− gτa(θ?)) (Eq. (1.21))

≤ α(aτa , θτa , θ?) ‖aτa‖G−1
τa (θτa ,θ?) ‖gτa(θτa)− gτa(θ?)‖G−1

τa (θτa ,θ?) (Cauchy-Schwarz)

≤ 2
√

1 + 2Sγτa(δ)α(aτa , θτa , θ?) ‖aτa‖G−1
τa (θτa ,θ?) (3.15)

where we last used ‖gt(θt)− gt(θ?)‖G−1
t (θt,θ?) ≤ 2

√
1 + 2Sγt(δ). Note also that Gτa(θτa , θ?) �

Naα(a, θτa , θ?)aaT +λτaId. It is therefore easy to show (for instance, using the Sherman-Morison
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formula) that ‖aτa‖2G−1
τa (θτa ,θ?) ≤ (α(aτa , θτa , θ∗)Na)−1. We therefore finally obtain by injecting

this into Eq. (3.30):

Na ≤ 100(1 + 2S)γτa(δ)2α(aτa , θτa , θ?) ≤ 25(1 + 2S)γτa(δ)2

Recall that γ̄T (δ) = O(
√
d log(T )). This finishes the proof as:

T∑

t=1
1(at ∈ A−) =

∑

a∈A−
Na ≤ 25(1 + 2S)|A−|γ̄T (δ)2 .

3.4 ( ) Optimality of the permanent regret in LogB.
We dedicated the last section to a finer understanding of the transitory regime by focusing on
the LogB setting. We continue in this spirit but focus on the permanent regime during which
we saw that algorithms suffer a Õ(d

√
µ̇(aT

? θ?)T ) regret. An important question remains; is this
optimal? We focus in this section on answering this question in the LogB case.

3.4.1 Regret lower-bound

To simplify notations we introduce the following notation:

κ?(θ) := 1/µ̇(a?(θ)Tθ) for θ ∈ Θ ,

and re-write the regret upper-bound of OFU-GLB and GLM-UCB+ as:

Regretθ?(T ) = Õ
(
d
√
T/κ?(θ?)

)
.

Our goal is to show that this bound is optimal by going after a problem-dependent lower-bound.

Challenges. Studying minimax-optimality w.r.t to d, T and κ?(θ?) altogether raises new
challenges for proving lower-bounds. Because κ?(θ?) is a problem-dependent quantity, obtaining
a meaningful lower-bound requires to identify a entire set of hard problem instances which comes
with a wide range of values for κ?(θ?) (especially large values which are in the domain of interest
for our study as they are tied to highly non-linear instances). Unfortunately this precludes
reproducing the lower-bound strategy laid out for instance in (Lattimore and Szepesvári, 2020,
Theorem 24.2) as their construction relies on problem for which ‖θ?‖ ≈ d/

√
T . Such problems

come with small values of κ?(θ?) (especially when T is large); this can still lead to valid lower-
bound, however in this case not extremely meaningful ones as the range of problems they cover
is rather limited.

Local minimax regret. To achieve our goal we introduce a “local” notion of minimax regret
inspired by the bound of Simchowitz and Foster (2020) in a reinforcement learning setting. For
any policy and given any reference point θ? we search for the hardest nearby alternative which
shares the same problem-dependent constant as θ?. Formally for ε > 0 we define the local
minima (expected) regret:

MinimaxRegretTθ?(ε) := min
π

max
‖θ−θ?‖≤ε

E [Regretπθ (T )] .

The following theorem proves that the regret incurred by GLM-UCB+ and OFU-GLB in the long-term
regime (large T ) is minimax-optimal w.r.t T , d and κ?.
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Theorem 3.4.1 (Problem-dependent Logistic Bandit lower-bound). Let A = Sd(0, 1). For any
problem instance θ? and for T ≥ d2κ?(θ?), there exist εT small enough such that:

(1) 5
6κ?(θ?) ≤ κ?(θ) ≤

6
5κ?(θ?) for all θ ∈ { ‖θ − θ?‖ ≤ εT

}
,

(2) MinimaxRegretTθ?(εT ) = Ω
(
d
√
T/κ?(θ?)

)
.

This local lower-bound naturally implies a global one, stated below.

Corollary 3.4.1 (Global Logistic Bandit Lower-Bound). Let A = Sd(0, 1). For any policy π
and for any tuple (T, d, κ) such that T ≥ d2κ, there exists a problem θ such that κ?(θ) = κ and:

Regretπθ (T ) = Ω
(
d
√
T/κ

)
.

3.4.2 Proof of the lower-bound

High level idea. We discuss here the construction of our local lower-bound. Let θ? denote
a fixed nominal instance and π a policy which has low-regret when playing against θ?. Our
strategy is to find an alternative problem θ′ which satisfies the two following conflicting criteria:
(1) π has the same behavior against both θ? and θ′ and (2) θ′ is far from θ? so that the optimal
arms a?(θ?) and a?(θ′) significantly differ. When playing against θ? we can expect π to produce
a trajectory where most of the time at ≈ a?(θ?). Indeed since:

Regretπθ?(T ) ∝
T∑

t=1
‖at − a?(θ?)‖2 ,

a small regret against θ? implies an accurate tracking of a?(θ?). Notice that when A = Sd(0, 1)
the optimal arm a?(θ?) is co-linear with θ?. As a consequence there are d − 1 directions (the
orthogonal complement of θ?) where θ? is poorly estimated. This suggest that parameters laying
in H?⊥ (the hyperplane supported by θ?, cf. Fig. 3.2) can easily be confused with θ? for the policy
π. This notion of distinguishability between parameters can be formalized through a discrepancy
measures dT (θ?, θ′) which quantifies how easy it is for π to determine if the rewards it receives
are generated by either θ? or θ′. For any θ′ ∈ H?⊥ it scales as follow:

dT (θ?, θ′) ≈
√

T

κ?(θ?)
‖θ? − θ‖2 .

This scaling is intuitive; the larger T , the more occasions for π to separate θ? from θ′. Further,
the larger κ?, the smaller the conditional variance of the rewards and the longer it takes to
correctly estimate an arm’s mean reward and determine wether it was generated by θ? or θ′. To
satisfy (1) we must choose θ′ so that dT (θ?, θ′) is small; the trade-off with (2) suggests picking
θ′ such that:

∥∥θ′ − θ?
∥∥2 ≈

√
κ?(θ?)
T

. (3.16)

Under such conditions, π cannot separate θ? from θ′ and must therefore act similarly against
both parameters (i.e most of the time we will have xt ≈ x?(θ?) against θ′). Easy computations
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θ?θ?θ?

θ′θ′θ′ {θ′, dT (θ?, θ′) ≤ 1}{θ′, dT (θ?, θ′) ≤ 1}{θ′, dT (θ?, θ′) ≤ 1}
XXX

H?⊥H?⊥H?⊥

Figure 3.2: Illustration of the construction behind the local lower-bound.

show that the regret of π against θ′ then writes:

Regretπθ′(T ) ≈ 1
κ?(θ?)

T∑

t=1

∥∥at − a?(θ′)
∥∥2

,

≈ 1
κ?(θ?)

T∑

t=1

∥∥a?(θ?)− a?(θ′)
∥∥2

,

≈ 1
κ?(θ?)

T
∥∥θ? − θ′

∥∥2
.

which gives the announced behavior after replacing ‖θ? − θ′‖ by the scaling suggested by the
trade-off between (1) and (2) presented in Eq. (3.16).

Formal proof. We follow Lattimore and Szepesvári (2020) and will note (Ωt,Ft,Pπθ) the
canonical bandit probability space at round t under the parameter θ. A thorough definition
of this probability space can be found in (Lattimore and Szepesvári, 2020, Section 4.7). To
simplify notations, we will denote Pθ = Pπθ the probability measure of the random sequence
{a1, r2, .., aT , rT+1}, obtained by having π interact with the environment parameter θ. We work
in a logistic bandit setting meaning that at any round t and conditionally on at being played:

rt+1 ∼ Bernoulli(µ(aT
t θ))

where µ(z) = (1 + exp(−z))−1 is the logistic function. We fix the policy π for now and start the
proof with the following result which ties the regret incurred against θ to the tracking of a?(θ).

Proposition 3.4.1. For all θ ∈ Rd the following holds:

Regretπθ (T ) ≥ ‖θ‖
κ?(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ)− at]2i

]
. (3.17)

Let us fix θ? as an arbitrary parameter that will serve as our reference point and let {ei}di=1
the canonical basis of Rd. Without loss of generality we assume that θ? = ‖θ∗‖ e1. With such
notations, we now introduce the set of unidentifiable parameters:

Ξε :=
{
θ? + ε

d∑

i=2
viei , v ∈ {−1, 1}d−1

}
⊂ H?⊥ ,
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where ε is a small positive scalar to be tuned later. Ξε is a set of slightly perturbed versions of
θ?. The goal is to set ε small enough so that (1) a policy interacting with any θ ∈ Ξε is unable
to tell with high confidence which parameter generates the rewards but however large enough
so (2) the policy cannot perform simultaneously well on every θ ∈ Ξε. To find such ε we are
going to reason by contradiction and assume that the policy π performs well for every θ ∈ Ξε.
Note that all the elements θs of Ξε have the same norm and because A = Sd(0, 1) they also
share the same κ?(θ), which we will denote κε for short. Note also that κε ≥ κ?(θ?). We make
the following hypothesis which will lead us to a contradiction for the right value of ε.

Hypothesis 3.4.1. There exists a universal constant C such that:

∀θ ∈ Ξε we have Regretπθ (T ) < Cd
√
T/κε .

Without loss of generality we will take C = 1. We now use Proposition 3.4.1 and introduce the
optimal action for our reference point θ?. By doing so we obtain the following result which proof
is deferred to Section 3.I.2.

Lemma 3.4.1. For each θ ∈ Ξε and any direction i ∈ [d, 2] let us introduce the event:

Ai(θ) :=
{

[a?(θ)− a?(θ?)]i ·
[

1
T

T∑

t=1
at − a?(θ?)

]

i

≥ 0
}
.

Then for any θ ∈ Ξε we have:

Regretπθ (T ) ≥ Tε2

2κε ‖θ?‖
d∑

i=2
Pθ(Ai(θ)) .

The goal is now to find one θ ∈ Ξε such that the above lower-bound is large. This can be done
thanks to a averaging hammer as in (Lattimore and Szepesvári, 2020, Section 24.1). We will
need a flipping operator Flipi(·) which for any θ ∈ Ξε changes the sign of the ith coordinate of
θ. Formally, let:

[Flipi(θ)]i = −[θ]i and [Flipi(θ)]j = [θ]j for all j 6= i . (3.18)

In the following lemma we show that the average value of ∑d
i=2 Pθ(Ai(θ)) over Ξε is linked to

the average relative entropy (denoted DKL) between the probability measures induced by flipped
versions of θ. The proof is deferred to Section 3.I.3.

Lemma 3.4.2 (Averaging Hammer). The following holds:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
Pθ(Ai(θ)) ≥

d

4 −
√
d

2

√√√√ 1
|Ξε|

∑

θ∈Ξε

d∑

i=2
DKL

(
Pθ,PFlipi(θ)

)
.

We now have to characterize this average relative entropy. This is done in the following Lemma
thanks to Hypothesis 3.4.1; the proof is presented in Section 3.I.4.

Lemma 3.4.3 (Average Relative Entropy ). Under Hypothesis 3.4.1 we have:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
DKL

(
Pθ,PFlipi(θ)

)
≤ 2
κε
dTε4 exp(4ε) + 4dε2 exp(4ε)(6 + d

2ε
2)
√
T

κε
.
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Combining Lemmas 3.4.2 and 3.4.3 we therefore obtain that:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
Pθ(Ai(θ)) ≥

d

4


1− 2

(
2ε4 T

κε
+ 24ε2

√
T

κε
+ 2dε4

√
T

κε

)1/2

exp(2ε)




Because this results holds for an average over Ξε, it must still be true for at least one θ̃ ∈ Ξε.
In other words, there exists θ̃ ∈ Ξε such that:

d∑

i=2
Pθ̃(Ai(θ̃)) ≥

d

4


1− 2

(
2ε4 T

κε
+ 24ε2

√
T

κε
+ 2dε4

√
T

κε

)1/2

exp(2ε)


 .

Thanks to Lemma 3.4.1 and by using κε ≥ κ?(θ?) we have that:

Regretπ
θ̃
(T ) ≥ dT ε2

8 ‖θ?‖κε


1− 2

(
2ε4 T

κ?(θ?)
+ 24ε2

√
T

κ?(θ?)
+ 2dε4

√
T

κ?(θ?)

)1/2

exp(2ε)


 .

Now is the time to tune ε. Taking ε2 = 1
32

√
κ?(θ?)
T yields after some computations that:

Regretπ
θ̃
(T ) ≥ d

√
T

256 ‖θ?‖

√
κ?(θ?)
κε


1− 2


24576

324 + 2
324d

√
κ?(θ?)
T




1/2

exp


 2√

32

√
κ?(θ?)
T





 .

When T ≥ d2κ?(θ?) we obtain after some computations that:

Regretπ
θ̃
(T ) ≥ d

√
T

512 ‖θ?‖

√
κ?(θ?)
κε

.

The only missing step requires tying κ?(θ?) and κε. Because ε is small θ? and any nearby alter-
native θ ∈ Ξε share the same problem-dependent constants κ?. Indeed by a direct application
of Lemma 1.B.3 (a self-concordance control result) for any θ ∈ Ξε:

κε exp
(
−
√
dε
)
≤ κ?(θ?) ≤ κε exp

(√
dε
)

Therefore since dε2 = (1/32)d
√
κ?(θ?)/T ≤ 1/32 when T ≥ d2κ?(θ?) we obtain that:

5κε/6 ≤ κ?θ? ≤ 6κε/5 .

which proves the claim 2. of the theorem. To sum-up, we have shown that when Hypothesis 3.4.1
holds it exists θ̃ ∈ Ξε with ε2 = 1

32
√
κ?(θ?)/T such that if T ≥ d2κ?(θ?):

Regretπ
θ̃
(T ) = Ω

(
d
√
T/κ?(θ?)

)
.

Of course if Hypothesis 3.4.1 does not hold the above result is guaranteed by definition. We
have therefore proven that for any policy if T ≥ d2κε and ε2 = 1

32
√
κε/T :

max
‖θ−θ?‖2≤dε2

Regretπθ (T ) = Ω
(
d
√
T/κ?(θ?)

)
.

This holds for any policy π which proves the point 1. of the claimed result.
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3.5 Numerical simulations
We finish this chapter with this short experimental section reporting numerical simulations illus-
trating our theoretical results. All experiments are run on Logistic Bandit instances. We start
by comparing the performance of GLM-UCB with OFU-GLB-r. The reason for omitting GLM-UCB+
and OFU-GLB is practical; indeed those algorithms require running non-convex optimization rou-
tines that cannot be bypassed. On the contrary and as we emphasized earlier OFU-GLB-r is fully
tractable and requires only solving convex programs. Note that in all generality GLM-UCB also
requires solving a non-convex optimization program at every round; it can however be bypassed
whenever θ̂t ∈ Θ. We enforce this by adopting a strong enough regularization and check that
it yields in practice the desired behavior. The results presented in Fig. 3.3 and Section 3.5,
corroborate our theoretical analysis: (1) OFU-GLB-r displays a clear advantage over previous
GLM-UCB ( Figs. 3.3a and 3.3b) and (2) in the Logistic Bandit case a higher level of non-linearity
(i.e higher values of κ?) is actually beneficial (see Fig. 3.4b) for OFU-GLB-r. This cannot be the
case for GLM-UCB as its performances can only degrade when the level of non-linearity increases
as confirmed in Fig. 3.4a.
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Figure 3.3: Empirical comparison of GLM-UCB and OFU-GLB-r on two LogB toy experiments. The
regret curves are averaged over 50 independent runs. Standard-deviation is reported in shaded
colors around the averaged cumulative regret. The arm-set A is composed of 40 arms drawn
uniformly at random in the 2-dimensional ball at the beginning of each run. We provide both
algorithms with the perfect knowledge of ‖θ?‖ - that is S = ‖θ?‖. This allows to approximate
the unit-ball case as in this scenario κ? ≈ κµ ≈ κ̄µ. GLM-UCB requires a knowledge of κ̄µ;
we provide it with an upper-bound on this quantity, computed on the unit-ball - that is for
A = B2(0, 1). For both the considered cases where we vary ‖θ?‖ (leading to different reward
sensitivity problem-dependent constants) OFU-GLB-r largely outperforms GLM-UCB as predicted
by the different regret upper-bounds.
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Figure 3.4: Comparing the effect of non-linearity on GLM-UCB and OFU-GLB-r by varying the level
of non-linearity in a Logistic Bandit setting. We reproduce the experimental set-up of Fig. 3.3.
As predicted by the different regret bounds the performance of GLM-UCB degrades when the level
of non-linearity increases (e.g when ‖θ?‖ or equivalently κ? ≈ κµ ≈ κ̄µ increases. In contrast
the performance of OFU-GLB improves when the level non-linearity increases.



Appendix
Appendix 3.A Proof of Proposition 3.A.1

Proposition 3.A.1 (Regret and exploration bonus). Recall the prediction error ∆t(a) = |µ(aTθ̃t)−
µ(aTθ?)|. If for all a ∈ A and t ∈ [T ] we have εt(a) ≥ ∆t(a) then:

Regretθ?(T ) ≤ 2
T∑

t=1
εt(at) .

Proof. By removing and adding ∑T
t=1 µ(aT

? θ̃t) and ∑T
t=1 µ(aT

t θ̃t) one has that:

Regretθ?(T ) =
T∑

t=1
µ(aT

? θ?)− µ(aT
t θ?)

=
[
T∑

t=1
µ(aT

? θ?)− µ(aT
? θ̃t)

]
+
[
T∑

t=1
µ(aT

t θ̃t)− µ(aT
t θ?)

]
+
[
T∑

t=1
µ(aT

? θ̃t)− µ(aT
t θ̃t)

]

≤
T∑

t=1
∆t(a?) +

T∑

t=1
∆t(at) +

[
T∑

t=1
µ(aT

? θ̃t)− µ(aT
t θ̃t)

]

≤
T∑

t=1
∆t(a?) +

T∑

t=1
∆t(at) +

T∑

t=1
εt(at)−

T∑

t=1
εt(a?) .

where we last used the definition of the action selection process at = arg maxa∈A µ(aTθ̃t) + εt(a)
which yields:

µ(aT
t θ̃t) + εt(at) ≥ µ(aT

? θ̃t) + εt(a?) .
If we have εt(a) ≥ ∆t(a) for all t ∈ [T ] and a ∈ A we obtained the claimed result. �

Appendix 3.B Proof of Lemma 3.1.1

Lemma 3.1.1 (Confident prediction-error upper-bound). Under the event {θ? ∈ Ct(δ), ∀t ≥ 1}
for any a ∈ A and t ≥ 1:

∆t(a) ≤ 2(1 + 2S)µ̇(aTθ̃t) ‖a‖H−1
t (θ̃t) γt(δ) + 2(1 + 2S)2κ̄µγ

2
t (δ) ‖a‖2V−1

t
= εt(a) .

Proof. By a second-order Taylor expansion:

∆t(a) ≤ µ̇(aTθ̃t)|aT(θ̃t − θ?)|+ (aT(θ̃t − θ?))2
∫ 1

v=0
(1− v)|µ̈(aTθ? + vaT(θ̃t − θ?))|dv .

By Assumption 1.4.1 we have |µ̈| ≤ µ̇; therefore maxa∈A,θ∈Θ |µ̈| ≤ L̄µ and:
∆t(a) ≤ µ̇(aTθ̃t)|aT(θ̃t − θ?)|+ (L̄µ/2)(aT(θ̃t − θ?))2

≤ µ̇(aTθ̃t) ‖a‖H−1
t (θ̃t)

∥∥∥θ̃t − θ?
∥∥∥

Ht(θ̃t)
+ (L̄µ/2) ‖a‖2H−1

t (θ̃t)

∥∥∥θ̃t − θ?
∥∥∥

2

Ht(θ̃t)

by the Cauchy-Schwarz inequality. By Corollary 2.3.1 if θ? ∈ Ct(δ) then θ? ∈ C′t(δ) and therefore:
∥∥∥θ? − θ̃t

∥∥∥
Ht(θ)

≤ 2(1 + 2S)γt(δ) .

Plugging this result in the prediction error bound we obtain:

∆t(a) ≤ 2(1 + 2S)γt(δ)
[
µ̇(aTθ̃t) ‖a‖H−1

t (θ̃t) + (1 + 2S)γt(δ)L̄µ ‖a‖2H−1
t (θ̃t)

]
,

≤ 2(1 + 2S)γt(δ)
[
µ̇(aTθ̃t) ‖a‖H−1

t (θ̃t) + (1 + 2S)γt(δ)κ̄µ ‖a‖2V−1
t

]
.

where we last used Ht(θ) ≥ ¯̀
µV−1

t for θ ∈ Θ and κ̄µ = L̄µ/¯̀
µ. �

86
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Appendix 3.C Proof of Eq. (3.7)
By a simple Taylor-expansion:

µ̇(aT
t θ̃t) ≤ µ̇(aT

t θ̄t) + L̄µ|aT(θ̃t − θ̄t)| (3.19)

≤ µ̇(aT
t θ̄t) + L̄µ ‖a‖G−1

t (θ̃t,θ̄t)

∥∥∥θ̃t − θ̄t
∥∥∥

Gt(θ̃t,θ̄t)
(Cauchy-Schwarz)

≤ µ̇(aT
t θ̄t) + L̄µ ‖a‖G−1

t (θ̃t,θ̄t)

∥∥∥gt(θ̃t)− gt(θ̄t)
∥∥∥

G−1
t (θ̃t,θ̄t)

(Eq. (1.21))

≤ µ̇(aT
t θ̄t) + 2

√
1 + 2SL̄µγt(δ) ‖a‖G−1

t (θ̃t,θ̄t)

≤ µ̇(aT
t θ̄t) + 2

√
1 + 2S(L̄µ/

√
¯̀
µ)γt(δ) ‖a‖V−1

t
(Eq. (1.23)) (3.20)

In the second to last inequality we used that:
∥∥∥gt(θ̃t)− gt(θ̄t)

∥∥∥
G−1
t (θ̃t,θ̄t)

≤
∥∥∥gt(θ̄t)− gt(θ̂t)

∥∥∥
G−1
t (θ̃t,θ̄t)

+
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
G−1
t (θ̃t,θ̄t)

≤
√

1 + 2S
(∥∥∥gt(θ̄t)− gt(θ̂t)

∥∥∥
H−1
t (θ̄t)

+
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
H−1
t (θ̃t

)

≤ 2
√

1 + 2Sγt(δ)

where we first used Eq. (1.28) and then the fact that θ̃t, θ̄t ∈ Ct(δ). Using Eq. (3.20) we therefore
have that:

R1(T ) ≤
T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) + 2

√
1 + 2S(L̄µ/

√
¯̀
µ)γ̄T (δ)

T∑

t=1
‖at‖H−1

t (θ̃t) ‖at‖V−1
t

≤
T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) + 2

√
1 + 2Sκ̄µγ̄T (δ)

T∑

t=1
‖at‖2V−1

t

=
T∑

t=1
µ̇(aT

t θ̄t) ‖at‖H−1
t (θ̃t) + 2

√
1 + 2Sκ̄µγ̄T (δ)R2(T )

which proves the claimed result.

Appendix 3.D Proof of Lemma 3.1.2

Recall we are trying to bound∑T
t=1

√
µ̇(aT

t θ̄) ‖āt‖L−1
t

where āt =
√
µ̇(aT

t θ̄t)at and Lt = ∑t−1
s=1 āsā

T
s +

λtId. Using the Cauchy-Schwarz inequality followed by a naive application of the Elliptical Po-
tential lemma would yield the following bound:

T∑

t=1

√
µ̇(aT

t θ̄) ‖āt‖L−1
t
≤

√√√√
T∑

t=1
µ̇(aT

t θ̄t)

√√√√
T∑

t=1
‖āt‖2L−1

t

≤
√

2dL̄µ log(λT + L̄µT/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) ,

where the last inequality is obtained thanks to the Elliptical Potential lemma and the fact that
all generality ‖āt‖ ≤

√
L̄µ. When L̄µ is large (for instance in the Poisson Bandit case) this bound

is way off; the dependency in L̄µ is an artifact of a loose analysis. This dependency is erased
whenever one can guarantee that ‖āt‖L−1

t
≤ 1 for all t ≥ 1. While this cannot happen at every
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round (except if the regularization is set to L̄µ which ultimately degrades the final regret bound)
it holds as soon as the action at (or an “almost” co-linear action) is played once. This hints that
the condition ‖āt‖L−1

t
≤ 1 holds for most rounds; we can just discard the rounds for which this

does not hold in the analysis and bound the regret by its maximal value on such rounds. This
analysis is also slightly off but allows to defer this annoying technicality to a second-order term
in the regret, as formalized in Lemma 3.1.2.

Lemma 3.1.2. The following holds:

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
≤
√

2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) + 2dL̄2
µ log(λT + L̄µT/d) .

Proof. Define the following set of rounds:

T =
{
t ∈ [T ], ‖at‖L−1

t
≥ 1

}
.

By a straight-forward bound we have:

|T | ≤
∑

t∈T
‖āt‖L−1

t
(‖āt‖L−1

t
≥ 1 for t ∈ T )

≤
∑

t∈T
‖āt‖2L−1

t
(‖āt‖L−1

t
≥ 1 for t ∈ T )

≤
T∑

t=1
‖āt‖2L−1

t
(T ∈ [T ])

≤ 2dL̄µ log(λT + L̄µT/d) ,

where we last used the Elliptical Potential Lemma (see Lemma B.3). Furthermore:

T∑

t=1

√
µ̇(aT

t θ̄) ‖āt‖L−1
t
1(at ∈ T ) ≤ |T |L̄µ

≤ 2dL̄2
µ log(λT + L̄µT/d) , (3.21)

by some simple upper-bounding leveraging the fact that Lt � λ1Id � Id and µ̇(aT
t θ̄t) ≤ L̄µ. On

the other hand:
T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
1(at /∈ T ) =

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
1(‖at‖L−1

t
< 1)

≤

√√√√
T∑

t=1
µ̇(aT

t θ̄t)1(‖at‖L−1
t
< 1)

√√√√
T∑

t=1
‖āt‖2L−1

t
1(‖at‖L−1

t
< 1)

≤

√√√√
T∑

t=1
µ̇(aT

t θ̄t)

√√√√
T∑

t=1
‖āt‖2L−1

t
1(‖at‖L−1

t
< 1)

≤
√

2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) (3.22)

where the second inequality is obtained by Cauchy-Schwarz, the third by using µ̇ > 0 and the
last by the use of the Elliptical Lemma with the condition ‖at‖L−1

t
≤ 1 for every round T (up
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to straight-forward re-indexing). The announced result is obtained by assembling Eqs. (3.21)
and (3.22);

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t

=
T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
1(at /∈ T ) +

T∑

t=1

√
µ̇(aT

t θ̄t) ‖āt‖L−1
t
1(at ∈ T )

≤
√

2d log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ̄t) + 2dL̄2
µ log(λT + L̄µT/d) .

�

Appendix 3.E Proof of Eq. (3.10)

By using successively a first-order Taylor expansion, Assumption 1.4.1, Eq. (1.19) and the defi-
nition of the regret the following set of inequalities hold:

T∑

t=1
µ̇(aT

t θ?) ≤ T µ̇(aT
? θ?) +

T∑

t=1

∣∣∣∣
∫ 1

v=0
µ̈(aT

? θ? + v(at − a?)Tθ?)dv
∣∣∣∣
∣∣∣(a? − at)Tθ?

∣∣∣

≤ T µ̇(aT
? θ?) +

T∑

t=1

[∫ 1

v=0
µ̇(aT

? θ? + v(at − a?)Tθ?)dv
]

(a? − at)Tθ? (|µ̈| ≤ µ̇)

= T µ̇(aT
? θ?) +

T∑

t=1
α(θ?, a?, at)(a? − at)Tθ?

= T µ̇(aT
? θ?) +

T∑

t=1
µ(aT

? θ?)− µ(aT
t θ?)

= T µ̇(aT
? θ?) + Regretθ?(T ) .

Appendix 3.F Proof of Eq. (3.12)

Recall that both θt, θ? ∈ Θ. Under the event {θ? ∈ Ct(δ)}:

‖θt − θ?‖Ht(θ?) ≤
√

1 + 2S ‖θt − θ?‖Gt(θt,θ?) (Eq. (1.28))

=
√

1 + 2S ‖gt(θt)− gt(θ?)‖G−1
t (θt,θ?) (Eq. (1.21))

≤
√

1 + 2S
(∥∥∥gt(θt)− gt(θ̂t)

∥∥∥
G−1
t (θt,θ?)

+
∥∥∥gt(θ?)− gt(θ̂t)

∥∥∥
G−1
t (θt,θ?)

)

≤ (1 + 2S)
(∥∥∥gt(θt)− gt(θ̂t)

∥∥∥
H−1
t (θt)

+
∥∥∥gt(θ?)− gt(θ̂t)

∥∥∥
H−1
t (θ?)

)
(Eq. (1.28))

≤ 2(1 + 2S)γt(δ) .

Appendix 3.G Proof of Theorem 3.3.1

Theorem 3.3.1. Let δ ∈ (0, 1]. On any LogB problem the regret of OFU-GLB satisfies with
probability at least 1− δ:

Regretθ?(T ) = O
(
d log(T )

√
µ̇(aT

? θ?)T + d2 log(T )2 + Sµ(aT
? θ?)

T∑

t=1
1(at ∈ A−)

)
.
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Proof. As usual we work under the event {θ? ∈ Ct(δ) for all t ≥ 1} which holds with probability
at least 1− δ. We start by performing a second order Taylor expansion of the regret.

Regretθ?(T ) =
T∑

t=1
µ(aT

? θ?)− µ(aT
t θ?)

=
T∑

t=1
µ̇(aT

t θ?)(a? − at)Tθ?

︸ ︷︷ ︸
R′1(T )

+
T∑

t=1
ϑ̃t
(
(a? − at)Tθ?

)2

︸ ︷︷ ︸
R′2(T )

.

where we defined ϑ̃t =
∫ 1
v=0(1 − v)µ̈

(
aT
t θ? + v(a? − at)Tθ?

)
dv. We start by examining R′1(T );

because by optimism aT
t θt ≥ aT

? θ? we have:

R′1(T ) ≤
T∑

t=1
µ̇(aT

t θ?)aT
t (θt − θ?)

which we already bounded in the proof of Theorem 3.2.2. Re-using the same argument yields:

R′1(T ) ≤ 2
√

2f(T )
√
T µ̇(aT

? θ?) + Regretθ?(T )

where f(T ) = (1 + 2S)γ̄T (δ)
√
d log(λT + T/(4d)) (we used L̄µ ≤ 1/4 in the LogB). As before

this yields an implicit second-order polynomial inequation on the regret. Solving it yields;

Regretθ?(T ) ≤ 4
√

2f(T )
√
µ̇(aT

? θ?)T + 16f(T )2 + 2R′2(T ) . (3.23)

We can now turn our attention to bounding R′2(T ) to finish the proof. The following holds:

R2(T ) =
T∑

t=1
ϑ̃t
{

(a? − at)Tθ?
}2
1 (at ∈ A−) +

T∑

t=1
ϑ̃t
{

(a? − at)Tθ?
}2
1 (at ∈ A+) , (3.24)

with A+ = A\A−. We start by bounding the most-left term in the above inequality. Note that
by self-concordance (|µ̈| ≤ µ̇) of the logistic function we have ϑ̃t ≤ α(θ?, a?, at) and therefore:

T∑

t=1
ϑ̃t
{

(a? − at)Tθ?
}2
1 (at ∈ A−) ≤

T∑

t=1
α(θ?, a?, at)

{
(a? − at)Tθ?

}2
1 (at ∈ A−)

≤ 2S
T∑

t=1
α(θ?, a?, at)

{
(a? − at)Tθ?

}
1 (at ∈ A−)

= 2S
T∑

t=1

[
µ(aT

? θ?)− µ(aT
t θ?)

]
1 (at ∈ A−)

≤ 2Sµ(aT
? θ?)

T∑

t=1
1 (at ∈ A−) (3.25)

where we used ‖θ?‖ ≤ S and ‖x‖ ≤ 1 (for any x ∈ A) in the second-inequality and the mean-
value theorem for the equality which follows. We turn to bounding the most r.h.s term in
Eq. (3.24). We start with the case aT

? θ? ≥ 0. We therefore look at the following definition for
the detrimental arms:

A− =
{
a ∈ A

∣∣∣aTθ? ≤ −1
}
.



Chapter 3. Locality-Sensitive Algorithms for GLBs 91

Fix t and assume that at ∈ A+. Note that when aT
t θ? ≥ 0 we inherit ϑ̃t ≤ 0 from the fact that

µ̈(z) ≤ 0 for all z ≥ 0. Using this fact (µ̈ ≤ 0 on R+) we can show that if aT
t θ? ≤ 0:

ϑ̃t ≤
∫ 1

v=0
(1− v)µ̈

(
(1− v)aT

t θ?
)
dv

≤
∫ 1

v=0
µ̇
(
(1− v)aT

t θ?
)
dv (µ̈ ≤ |µ̈| ≤ µ̇)

≤ µ̇(aT
t θ?)

∫ 1

v=0
exp

(
v|aT

t θ?|
)

(Lemma 1.B.3)

≤ e1µ̇(aT
t θ?) (−1 ≤ aT

t θ? ≤ 0)

where in the last inequality we used aT
t θ? ≥ [−1, 0] since at ∈ A+ and aT

t θ? ≤ 0 by assumption.
Packing this results together we showed that:

ϑ̃t1(at ∈ A+) ≤ e1µ̇(aT
t θ∗)1(at ∈ A+, a

T
t θ? ≤ 0) + 0 · 1(at ∈ A+, a

T
t θ? ≥ 0)

≤ e1µ̇(aT
t θ∗)1(at ∈ A+)

≤ e1µ̇(aT
t θ∗)

Therefore we obtain:
T∑

t=1
ϑ̃t
{

(a? − at)Tθ?
}2
1 (at ∈ A+) ≤ e1

T∑

t=1
µ̇(aT

t θ?)
{

(a? − at)Tθ?
}2

≤ e1
T∑

t=1
µ̇(aT

t θ?)
{
aT
t (θt − θ?)

}2
(optimism)

≤ 4e1(1 + 2S)2γ̄2
T (δ)

T∑

t=1
µ̇(aT

t θ?) ‖at‖2H−1
t (θ?) (Eq. (3.12))

≤ 8e1f(T )2 (3.26)

where we last used the Elliptical Potential lemma. We now consider the case aT
? θ? ≤ 0. The

definition of A− becomes:

A− =
{
a
∣∣∣ µ̇(aTθ∗) ≤ µ̇(aT

? θ?)/2
}
.

Fix t and assume that at ∈ A+. Thanks to |µ̈| ≤ µ̇:

ϑ̃t ≤ α(θ?, a?, at)
≤ µ̇(aT

? θ∗) (aT
t θ? ≤ aT

? θ? ≤ 0 and µ̇ increasing on R−)
≤ 2µ̇(aT

t θ?) (x ∈ A+)

Therefore we obtain:
T∑

t=1
ϑ̃t
{

(a? − at)Tθ?
}2
1 (at ∈ A+) ≤ 2

T∑

t=1
µ̇(aT

t θ?)
{

(a? − at)Tθ?
}2

≤ 2
T∑

t=1
µ̇(aT

t θ?)
{
aT
t (θ? − θt)

}2
(optimism)

≤ 8(1 + 2S)2γ̄2
T (δ)

T∑

t=1
µ̇(aT

t θ?) ‖at‖2H−1
t (θ?) (Eq. (3.12))

≤ 16f(T )2 (3.27)
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Assembling Eq. (3.24)-(3.25)-(3.26)-(3.27) we obtain that:

R2(T ) ≤ 22f(T )2 + 2Sµ(aT
? θ?)

T∑

t=1
1(at ∈ A−) .

Merging this result with Eq. (3.23) yields the bound;

Regretθ?(T ) ≤ 4
√

2f(T )
√
µ̇(aT

? θ?)T + 60f(T )2 + 2Sµ(aT
? θ?)

T∑

t=1
1(at ∈ A−) .

Taking the minimum between this bound and Theorem 3.2.2 complemented by the fact that
f(T ) = O(d log(T )) yields the announced result. �

Appendix 3.H Proof of Proposition 3.3.1

Proposition 3.3.1 (Length of transitory regime). Let {a1, . . . , aT } be generated by OFU-GLB on
a LogB problem with arm-set A. The following holds with high probability:

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) = Õ(d2 + dK) if |A−| ≤ K , (3.13)

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) = Õ(d3) if A = Bd(0, 1) . (3.14)

Proof of Eq. (3.13)

Proof. As usual we work under the event {∀t ≥ 1, θ? ∈ Ct(δ)} which holds with probability 1−δ.
We assume that there is a finite number K of detrimental arms. We will separate three cases
to ease the analysis:

(1) aT
? θ? ≥ 0 ,

(2) aT
? θ? ≤ −1 ,

(3) aT
? θ? ∈ [−1, 0] .

(3.28)

(1) aT
? θ? ≥ 0. In this configuration we have A− = {a ∈ A, aTθ? ≤ −1}. This implies that

detrimental arms have a large (constant) gap. Indeed for any a ∈ A−:

µ(aT
? θ?)− µ(aTθ?) ≥ µ(aT

? θ?)− µ(−1) ≥ 1/2− µ(−1) ≥ 1/5 . (3.29)

We can use this result to show that OFU-GLB plays detrimental arms only logarithmically often.
Indeed, for any a ∈ A− let τa be the last time-step when a is played, and Na the number of time
a was played over the whole horizon. Formally:

τa = max
t
{t ∈ [T ] at = a} and Na =

T∑

t=1
1(at = a) =

τa∑

t=1
1(at = a) .
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Fix a ∈ A− and let τ = τa (i.e aτ = a). Thanks to Eq. (3.29) and the mean-value theorem:

1/5 ≤ µ
(
aT
? θ?

)
− µ

(
aT
τ θ?

)

≤ µ
(
aT
τ θτ

)
− µ

(
aT
τ θ?

)
(optimism)

≤ α(aτ , θτ , θ?)aT
τ (θτ − θ?) (mean-value theorem)

= α(aτ , θτ , θ?)aT
τ G−1

τ (θτ , θ?) (gτ (θτ )− gτ (θ?)) (Eq. (1.21))
≤ α(aτ , θτ , θ?) ‖aτ‖G−1

τ (θτ ,θ?) ‖gτ (θτ )− gτ (θ?)‖G−1
τ (θτ ,θ?) (Cauchy-Schwarz)

≤ 2
√

1 + 2Sγτ (δ)α(aτ , θτ , θ?) ‖aτ‖G−1
τ (θτ ,θ?) (3.30)

where we last used ‖gt(θt)− gt(θ?)‖G−1
t (θt,θ?) ≤ 2

√
1 + 2Sγt(δ) (see proof of Eq. (3.12) in Ap-

pendix 3.F). Note also that Gτ (θτ , θ?) � Naα(a, θτ , θ?)aaT + λτId. It is therefore easy to show
(for instance using the Sherman-Morison formula) that ‖aτ‖2G−1

τ (θτ ,θ?) ≤ (α(aτ , θτ , θ∗)Na)−1.
We therefore finally obtain by injecting this into Eq. (3.30):

Na ≤ 100(1 + 2S)γτ (δ)2α(aτ , θτ , θ?)
≤ 25(1 + 2S)γτ (δ)2 (α ≤ sup µ̇ ≤ 1/4)

Remember that this results holds for any a ∈ A−. Therefore using µ ≤ 1:

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) =

∑

a∈A−
Na ≤ 25(1 + 2S)|A−|γ̄T (δ)2 .

Using the fact that γ̄t(δ) = O(
√
d log(T )) we obtain the announced result:

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) = Õ

(
d2 + dK

)
.

(2) aT
? θ? < −1. In this configuration one necessarily has aTθ? ≤ −1 and µ(aTθ?) ≤ µ(aT

? θ?) ≤
µ(−1) ≤ 1/2 for any a ∈ A. We start by characterizing the gap of detrimental arms which are
now defined by A− =

{
a ∈ A, µ̇(aTθ?) ≤ µ̇(aT

? θ?)/2
}
. From µ̇ = µ(1 − µ) we get that for any

a ∈ A−:

µ(aTθ?) ≤
µ(aT

? θ?)
2

1− µ(aT
? θ?)

1− µ(xTθ?)
≤ µ(aT

? θ?)/2 (µ(aTθ?) ≤ µ(aT
? θ?))

and therefore for any a ∈ A−:
µ(aT

? θ?)− µ(aTθ?) ≥ µ(aT
? θ?)/2 (3.31)

Note the difference with case (1) since here the gap is no longer lower-bounded by a universal
constant. Fix a ∈ A− and let τ = τa (i.e aτ = a). Using the mean-value theorem we obtain:

µ(aT
? θ?)/2 ≤ µ

(
aT
? θ?

)
− µ

(
aT
τ θ?

)

≤ α(θ?, a?, aτ )θT
? (a? − aτ )

≤ α(θ?, a?, aτ )aT
τ (θτ − θ?) (optimism)

≤ α(θ?, a?, aτ )aT
τ G−1

τ (θτ , θ?)(gτ (θτ )− gτ (θ?)) (Eq. (1.21))
≤ α(θ?, a?, aτ ) ‖aτ‖G−1

τ (θτ ,θ?) ‖gτ (θτ )− gτ (θ?)‖G−1
τ (θτ ,θ?) (Cauchy-Schwarz)

≤ 2
√

1 + 2Sγτ (δ)α(θ?, a?, aτ ) ‖aτ‖G−1
τ (θτ ,θ?)

≤ 2
√

1 + 2Sγτ (δ)µ̇(aT
? θ?) ‖aτ‖G−1

τ (θτ ,θ?) (3.32)
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where we used the fact that µ̇ is increasing on [aT
τ θ?, a

T
? θ?] which yields α(θ?, a?, aτ ) ≤ µ̇(aT

? θ?).
We now need to separate two cases:

(2.1) aTθτ ≤ 0 . Thanks to optimism (i.e aTθτ ≥ aT
? θ?) and the monotonicity (increasing)

of µ̇ in R− we obtain that µ̇(aT
? θ?) ≤ µ̇(aTθτ ). Further:

‖aτ‖G−1
τ (θτ ,θ?) ≤

√
1 + 2S ‖aτ‖H−1

τ (θτ ) (Eq. (1.28))

≤
√

1 + 2S(Naµ̇(aTθτ ))−1/2 (Sherman-Morison)
≤
√

1 + 2S(Naµ̇(aT
? θ?))−1/2 (3.33)

(2.1) aTθτ ≥ 0

‖aτ‖G−1
τ (θτ ,θ?) ≤ (Naα(a, θτ , θ?))−1/2 (Sherman-Morison)

≤ N−1/2
a

(
aTθτ − aTθ?

µ(aTθτ )− µ(aTθ∗)

)1/2

(mean-value theorem)

≤ N−1/2
a

√
2S
(
µ(aTθτ )− µ(aTθ∗)

)−1/2
(‖a‖ ≤ 1, θτ , θ? ∈ Θ)

≤ N−1/2
a

√
2S
(
1/2− µ(aTθ∗)

)−1/2
(aTθτ ≥ 0⇒ µ(aTθτ ) ≥ 1/2)

≤ N−1/2
a

√
2S (1/2− µ(−1))−1/2 (aTθ? ≤ 0⇒ µ(aTθ?) ≤ µ(−1))

≤ 5N−1/2
a

√
2S

≤ 5(Naµ̇(aT
? θ?))−1/2√2S (0 ≤ µ̇ ≤ 1)

(3.34)

Therefore combining Eqs. (3.33) and (3.34) we obtain that whichever we are in case (2.1) or
(2.2) for any a ∈ A−:

‖aτ‖G−1
τ (θτ ,θ?) ≤ 5

√
1 + 2S

(
Naµ̇(aT

? θ?)
)−1/2

γτ (δ)

Plugging this result in Eq. (3.32) we obtain that:

µ(aT
? θ?)/2 ≤ 10(1 + 2S)N−1/2

a

(
µ̇(aT

? θ?)
)1/2

γτ (δ)

Therefore for any a ∈ A− and since µ̇ = µ(1− µ) ≤ µ:

Na ≤ 400(1 + 2S)2 µ̇(aT
? θ?)

µ(aT
? θ?)2γτ (δ)2 ≤ 400(1 + 2S)2

µ(aT
? θ?)

γτ (δ)2(µ̇ ≤ µ) (3.35)

Following the same reasoning as far case (1) we arrived to the same result;

µ(aT
? θ?)

T∑

t=1
1(at ∈ A−) =

∑

a∈A−
Na ≤ 400(1 + 2S)2|A−|γ̄T (δ)2 .

(3) aT
? θ? ∈ [−1, 0] In this configuration A− = {a ∈ A, µ̇(aTθ?) ≤ µ̇(aT

? θ?)/2}. We can directly
re-use the characterization of the sub-optimality gap for detrimental arms of Eq. (3.31). This
yields that for any a ∈ A−:

µ(aT
? θ?)− µ(aTθ?) ≥ µ̇(aT

? θ?)/2
≥ µ̇(−1)/2 ≥ 9/200

We are therefore in the same configuration as in case (1) (the sub-optimality gap of detrimental
arms is lower-bounded by a universal constant). Following the same reasoning yields to the
announced claim. This finishes the proof.

�
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Proof of Eq. (3.14)

Proof. As usual we work under the event {∀t ≥ 1, θ? ∈ Ct(δ)} which holds with probability
1− δ. In the unit ball configuration a?(θ) = θ/‖θ‖ for any θ ∈ Θ. Further, this guarantees that
a?(θ)Tθ ≥ 0 for all θ ∈ Θ. In particular, a?(θ?)Tθ? ≥ 0 and we have the following definition for
the detrimental arms:

A− =
{
a ∈ A, aTθ? ≤ −1

}
.

As before the objective of the proof is to bound the number of time detrimental arms are played
by OFU-GLB within T rounds. We collect such rounds in the following set:

T := {t ≤ T s.t at ∈ A−}, . (3.36)

We are going to decompose the set T in distinct subsets each one being of small cardinality.
Formally, we construct {Ti}i≥1 through the following backward induction.

1. Initialization. T0 = ∅, i = 0.

2. Backward induction. While ⋃j≥1 Tj 6= T , we increment i by 1, and define

τi = max



t ∈ T , t /∈

⋃

j<i

Tj



 ,

Ti =



t ≤ τi, t /∈

⋃

j<i

Tj , aT
t θτi ≥ 0, at ∈ A−



 .

(3.37)

Such construction immediately implies that {Ti}i≥1 is a partition of T .
Proposition 3.H.1. Let T and {Ti}i≥1 be defined as in Eq. (3.36) and Eq. (3.37), and let N
be the number of subsets {Ti}. Then:

N⋃

i=1
Ti = T ; Ti ∩ Tj = ∅, ∀i 6= j; N ≤ (d+ 1).

Proof of Proposition 3.H.1. The fact that ⋃Ni=1 Ti is a partition of T directly follows from its
construction. Thus, we only have to prove that N ≤ (d+ 1). By construction, of the time steps
τi for i = 1, . . . , N , we have that

∀j > i, aT
τiθτj < 0,

and since θτi is co-linear with aτi , we obtain

∀j, i ∈ [N ], aT
τiaτj < 0.

We conclude by using Lemma. 19 in Dong et al. (2019), which states that it can only exists at
least d+ 1 such arms, and hence such time steps. As a result N ≤ (d+ 1). �

From the definition of ⋃Ni=1 Ti and Proposition 3.H.1, we have that

|T | =
N∑

i=1
|Ti| ≤ (d+ 1) max

i=1,...,N
|Ti|.

As a result, we only have to bound |Ti| for any i ∈ [N ] to conclude the proof. Notice that τi
is the last time step in Ti and that for all t ∈ Ti, aT

t θ∗ ≤ −1 (from the definition of T ) while
aT
t θτi ≥ 0 (from the construction of the partition). Hence for all t ∈ Ti:
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µ(0)− µ(−1) ≤ µ(aT
t θτi)− µ(aT

t θ?)
= α(at, θτi , θ?)aT

t (θτi − θ?) (mean-value theorem)
≤ α(at, θτi , θ?) ‖at‖G−1

τi
(θτi ,θ?) ‖θτi − θ?‖Gτi (θτi ,θ?) (Cauchy-Schwarz)

≤ 2
√

1 + 2Sγτi(δ)α(at, θτi , θ?) ‖at‖G−1
τi

(θτi ,θ?) (θ? ∈ Ct(δ))

≤
√

1 + 2S
2 γτi(δ) ‖at‖G−1

τi (θτi ,θ?) . (α ≤ sup µ̇ ≤ 1/4) (3.38)

Further for all t ∈ Ti, aT
t θ? ≤ −1 and aT

t θτi ≥ 0 leads to

α(at, θτi , θ?) = µ(aT
t θτi)− µ(aT

t θ?)
aT
t (θτi − θ?)

≥ µ(0)− µ(−1)
2S . (‖a‖ ≤ 1, θτi , θ? ∈ Θ)

As a result, let V̄τi := ∑
s∈Ti asa

T
s + λτiId, one obtains,

Gτi(θτi , θ?) <
∑

s∈Ti
α(as, θτi , θ?)asaT

s + λτiId �
µ(0)− µ(−1)

2S V̄τi ,

which combined with Eq. (3.38) leads to:

(µ(0)− µ(−1))3/2 ≤
√
S/2
√

1 + 2Sγτi(δ)‖at‖V̄−1
τi
. (3.39)

Taking the square and summing over t ∈ Ti yields:

(µ(0)− µ(−1))3|Ti| ≤ (S/2)(1 + 2S)γτi(δ)2 ∑

t∈Ti
‖at‖2V̄−1

τi

≤ (S/2)(1 + 2S)γτi(δ)2Tr


V̄−1

τi

∑

t∈Ti
ata

T
t




≤ (S/2)(1 + 2S)γτi(δ)2d

and therefore |Ti| ≤ 50(1 + 2S)2dγ2
τi(δ).Therefore;

|T | =
N∑

i=1
|Ti| ≤ 50(1 + 2S)2(d+ 1)dγ̄T (δ)2 ,

which finishes the proof since γ̄T (δ) = O(
√
d log(T )).

�

Appendix 3.I Proof of intermediary results for Theorem 3.4.1

Throughout the proof we actually assume for ease of exposition that ‖θ?‖ ≥ 1 which implies
that κ?(θ?) ≥ 5. It can be avoided and we make it here to simplify computations and avoid
clutter. Note that κ(θ?) ≥ 5 is precisely the region of interest for this lower-bound, i.e large
values of κ. In the same spirit also make the following assumption on ε:

ε ≤ ‖θ?‖ /
√
d− 1 . (3.40)

which can trivially imposed when setting the final value of ε.
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3.I.1 Proof of Proposition 3.4.1

Proposition 3.4.1. For all θ ∈ Rd the following holds:

Regretπθ (T ) ≥ ‖θ‖
κ?(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ)− at]2i

]
. (3.17)

Further if ‖θ‖ ≥ 1:

Regretπθ (T ) ≥ 1
6Eθ

[
T∑

t=1
µ̇(aT

t θ) ‖a?(θ)− at‖2
]
. (3.18)

Proof. We start by proving the second result. By definition of the regret:

Regretπθ (T ) = Eθ

[
T∑

t=1
µ(a?(θ)Tθ)− µ(aT

t θ)
]

= Eθ

[
T∑

t=1
α (θ, a?(θ), at)

(
a?(θ)Tθ − aT

t θ
)]

(mean-value theorem)

≥ Eθ

[
T∑

t=1

µ̇(aT
t θ)

1 + |θT(a?(θ)− at)|
(
a?(θ)Tθ − aT

t θ
)]

(Lemma 1.B.1)

≥ 1
1 + 2 ‖θ‖Eθ

[
T∑

t=1
µ̇(aT

t θ)
(
a?(θ)Tθ − aT

t θ
)]

(‖a‖ ≤ 1 ∀a ∈ A)

≥ ‖θ‖
1 + 2 ‖θ‖Eθ

[
T∑

t=1
µ̇(aT

t θ)
(

1− aT
t

θ

‖θ‖

)]

≥ ‖θ‖
2 + 4 ‖θ‖Eθ

[
T∑

t=1
µ̇(aT

t θ) ‖a?(θ)− at‖2
]

where in the last line we used that for all x, y ∈ Sd(0, 1) we have 1 − xTy = 1
2 ‖x− y‖

2. Using
the fact that ‖θ‖ ≥ 1 yields the second result. A similar bound can be written by using
α(θ, a?(θ), at) ≥ µ̇(a?(θ)Tθ). Namely, we obtain:

Regretπθ (T ) ≥ Eθ

[
T∑

t=1
µ̇(a?(θ)Tθ)

(
a?(θ)Tθ − aT

t θ
)]

≥ ‖θ‖
κ?(θ)

Eθ

[
T∑

t=1
‖a?(θ)− at‖2

]

≥ ‖θ‖
κ?(θ)

Eθ

[
T∑

t=1
‖a?(θ)− at‖2

]
(‖θ?‖ ≥ 1)

≥ ‖θ‖
κ?(θ)

Eθ

[
T∑

t=1

d∑

i=1
[a?(θ)− at]2i

]

Using the linearity of the expectation delivers the first claim. �

3.I.2 Proof of Lemma 3.4.1

Lemma 3.4.1. For each θ ∈ Ξε and any direction i ∈ [d, 2] let us introduce the event:

Ai(θ) :=
{

[a?(θ)− a?(θ?)]i ·
[

1
T

T∑

t=1
at − a?(θ?)

]

i

≥ 0
}
.
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Then for any θ ∈ Ξε we have:

Regretπθ (T ) ≥ Tε2

2κε ‖θ?‖
d∑

i=2
Pθ(Ai(θ)) .

Proof. From Proposition 3.4.1 we have that:

Regretπθ (T ) ≥ ‖θ‖
κ(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ)− at]2i

]

≥ ‖θ‖
κ(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ)− at]2i 1 {Ai(θ)}

]

= ‖θ‖
κ(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ)− a?(θ?) + a?(θ?)− at]2i 1 {Ai(θ)}

]

= ‖θ‖
κ(θ)

d∑

i=1
[a?(θ)− a?(θ?)]2i Eθ [1 {Ai(θ)}]

+ ‖θ‖
κ(θ)

d∑

i=1
Eθ

[
T∑

t=1
[a?(θ?)− at]2i 1 {Ai(θ)}

]

+ 2T ‖θ‖
κ(θ)

d∑

i=1
Eθ

[
1 {Ai(θ)}

[
a?(θ?)−

1
T

T∑

t=1
at

]

i

[a?(θ)− a?(θ?)]i
]

≥ ‖θ‖
κ(θ)T

d∑

i=1
[a?(θ)− a?(θ?)]2i Eθ [1 {Ai(θ)}]

where in the last line we lower-bounded the last two terms by 0 (this was done for the second
term thanks to the definition of Ai(θ)). Some easy computations yield the result:

Regretπθ (T ) ≥ T ‖θ‖
κε

ε2

‖θ?‖2 + (d− 1)ε2
d∑

i=2
Eθ [1 {Ai(θ)}]

≥ T ‖θ‖
κε

ε2

2 ‖θ?‖2
d∑

i=2
Eθ [1 {Ai(θ)}] (Equation (3.40))

= Tε2

2κε ‖θ?‖
d∑

i=2
Pθ(Ai(θ))

�

3.I.3 Proof of Lemma 3.4.2

Lemma 3.4.2 (Averaging Hammer). The following holds:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
Pθ(Ai(θ)) ≥

d

4 −
√
d

2

√√√√ 1
|Ξε|

∑

θ∈Ξε

d∑

i=2
DKL

(
Pθ,PFlipi(θ)

)
.

Proof. Let us fix θ ∈ Θ and i ∈ [2, d]. Note that:

PFlipi(θ)(Ai(Flipi(θ)) ≥ Pθ(Ai(Flipi(θ)))−DTV
(
Pθ,PFlipi(θ)

)

≥ Pθ(Ai(Flipi(θ)))−
√

1
2DKL

(
Pθ,PFlipi(θ)

)
(Pinsker inequality)

≥ Pθ(ACi (θ))−
√

1
2DKL

(
Pθ,PFlipi(θ)

)
(3.41)
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where DKL denotes the relative entropy, and where we used the fact that:

Ai(Flipi(θ)) =
{

[a?(Flipi(θ))− a?(θ?)]i ·
[

1
T

T∑

t=1
at − a?(θ?)

]

i

≥ 0
}

(definition)

=
{

[a?(Flipi(θ))]i ·
[

1
T

T∑

t=1
at

]

i

≥ 0
}

(a?(θ?)i = 0)

=
{
− [a?(θ)]i ·

[
1
T

T∑

t=1
at

]

i

≥ 0
}

([Flipi(θ)]i = −[θ]i)

= Ai(θ)C

In the following, we denote Ξ+
i := {θ ∈ Ξε such that sign([θ]i) > 0} and Ξ−i := {θ ∈ Ξε such that sign([θ]i) <

0}. Then by averaging over Ξε:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
Pθ(Ai(θ)) = 1

|Ξε|
d∑

i=2

∑

θ∈Ξε
Pθ(Ai(θ))

= 1
|Ξε|

d∑

i=2

∑

θ∈Ξ+
i

(
Pθ(Ai(θ)) + PFlipi(θ)(Ai(Flipi(θ))

)

≥ 1
|Ξε|

d∑

i=2

∑

θ∈Ξ+
i

Pθ(Ai(θ)) + Pθ(ACi (θ))−
√

1
2DKL

(
Pθ,PFlipi(θ)

)
(Equation (3.41))

≥ 1
|Ξε|

d∑

i=2

∑

θ∈Ξ+
i

1−
√

1
2DKL

(
Pθ,PFlipi(θ)

)

Repeating the same operation but referencing to Ξ−i we easily get that:

2
|Ξε|

∑

θ∈Ξε

d∑

i=2
Pθ(Ai(θ)) ≥

1
|Ξε|

d∑

i=2

∑

θ∈Ξ+
i ∪Ξ−i

1−
√

1
2DKL

(
Pθ,PFlipi(θ)

)

= 1
|Ξε|

d∑

i=2

∑

θ∈Ξε
1−

√
1
2DKL

(
Pθ,PFlipi(θ)

)

= (d− 1)−
d∑

i=2

1
|Ξε|

∑

θ∈Ξε

√
1
2DKL

(
Pθ,PFlipi(θ)

)

≥ d

2 −
d∑

i=2

1
|Ξε|

∑

θ∈Ξε

√
1
2DKL

(
Pθ,PFlipi(θ)

)
(d ≥ 1)

≥ d

2 −
1√
2

d∑

i=2

√√√√ 1
|Ξε|

∑

θ∈Ξε
DKL

(
Pθ,PFlipi(θ)

)
(Jensen inequality)

≥ d

2 −
√
d− 1

2

√√√√
d∑

i=2

1
|Ξε|

∑

θ∈Ξε
DKL

(
Pθ,PFlipi(θ)

)
(Cauchy-Schwartz)

≥ d

2 −
√
d

√√√√
d∑

i=2

1
|Ξε|

∑

θ∈Ξε
DKL

(
Pθ,PFlipi(θ)

)

which proves the announced result. �
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3.I.4 Proof of Lemma 3.4.3

Lemma 3.4.3 (Average Relative Entropy ). Under Hypothesis 3.4.1 we have:

1
|Ξε|

∑

θ∈Ξε

d∑

i=2
DKL

(
Pθ,PFlipi(θ)

)
≤ 2
κε
dTε4 exp(4ε) + 4dε2 exp(4ε)(6 + d

2ε
2)
√
T

κε
.

We will use the following result to control the relative entropy between two different parameters.
It is a consequence of the relative entropy decomposition presented in Lattimore and Szepesvári
(2020) along with the fact that the relative entropy is dominated by the chi-square divergence.

Lemma 3.I.1 (Relative Entropy Decomposition). For any θ, θ′ we have that:

DKL (Pθ,Pθ′) ≤ Eθ



T∑

t=1

(
µ(aT

t θ)− µ(aT
t θ
′
)2

µ̇(aT
t θ
′)




Proof. Denote P θa = Pθ(r|a). Thanks to (Lattimore and Szepesvári, 2020, Section 24.1) we have:

DKL (Pθ,Pθ′) = Eθ

[
T∑

t=1
DKL

(
P θat , P

θ′
at

)]

= Eθ

[
T∑

t=1
DKL

(
Bernoulli(aT

t θ),Bernoulli(aT
t θ
′)
)]

≤ Eθ

[
T∑

t=1
Dχ2

(
Bernoulli(aT

t θ),Bernoulli(aT
t θ
′)
)]

where we used DKL ≤ Dχ2 (Tsybakov, 2008, Chapter 2). Using the expression of the χ2-
divergence for Bernoulli random variables finishes the proof. �

Applying this result between Pθ and PFlipi(θ) yields:

DKL(Pθ,PFlipi(θ)) ≤ Eθ



T∑

t=1

(
µ(aT

t θ)− µ(aT
t Flipi(θ)

)2

µ̇(aT
t Flipi(θ))




≤ Eθ

[
T∑

t=1

α2(at, θ,Flipi(θ))
µ̇(aT

t Flipi(θ))
{
aT
t (θ − Flipi(θ))

}2
]

(mean-value theorem)

We are now going to link α2(at, θ,Flipi(θ)) to µ̇(aT
t Flipi(θ)) and µ̇(aT

t θ) thanks to the self-
concordance. Indeed, it is easy to show (see the proof of Lemma 1.B.1) that for all z1, z2 we
have µ̇(z1) ≤ µ̇(z2) exp(|z1 − z2|). We therefore have the following inequalities:

α(at, θ,Flipi(θ)) ≤ µ̇(aT
t θ) exp

(∣∣∣aT
t (θ − Flipi(θ)

∣∣∣
)

and

α(at, θ,Flipi(θ)) ≤ µ̇(aT
t Flipi(θ)) exp

(∣∣∣aT
t (θ − Flipi(θ)

∣∣∣
)
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Plugging this in the relative entropy decomposition we obtain:

DKL(Pθ,PFlipi(θ)) ≤ Eθ

[
T∑

t=1

α2(at, θ,Flipi(θ))
µ̇(aT

t Flipi(θ))
{
aT
t (θ − Flipi(θ))

}2
]

≤ Eθ

[
T∑

t=1
µ̇(aT

t θ)
{
aT
t (θ − Flipi(θ))

}2
]

exp
(
2
∣∣∣aT
t (θ − Flipi(θ)

∣∣∣
)

≤ exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ)
{
aT
t (θ − Flipi(θ))

}2
]

≤ 2ε2 exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ)[at]2i

]

= 2ε2 exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ) [at − a?(θ) + a?(θ)]2i

]

≤ 4ε2 exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ) [at − a?(θ)]2i +
T∑

t=1
µ̇(aT

t θ) [a?(θ)]2i

]

where we last used the fact that (a+ b)2 ≤ 2(a2 + b2). Therefore by summing over d:

d∑

d=2
DKL(Pθ,PFlipi(θ)) ≤ 4ε2 exp(4ε)Eθ

[
T∑

t=1

d∑

i=2
µ̇(aT

t θ) [at − a?(θ)]2i +
T∑

t=1

d∑

i=2
µ̇(aT

t θ) [a?(θ)]2i

]

≤ 4ε2 exp(4ε)Eθ
[
T∑

t=1

d∑

i=1
µ̇(aT

t θ) [at − a?(θ)]2i +
T∑

t=1

d∑

i=1
µ̇(aT

t θ) [a?(θ)]2i

]

≤ 4ε2 exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ) ‖at − a?(θ)‖2 + d
ε2

‖θ?‖2 + (d− 1)ε2
T∑

t=1
µ̇(aT

t θ)
]

≤ 4ε2 exp(4ε)Eθ
[
T∑

t=1
µ̇(aT

t θ) ‖at − a?(θ)‖2 + d

2ε
2
T∑

t=1
µ̇(aT

t θ)
]

where we used Equation (3.40) and the fact that ‖θ?‖ ≥ 1. Using Proposition 3.4.1 we obtain:

d∑

d=2
DKL(Pθ,PFlipi(θ)) ≤ 4ε2 exp(4ε)

(
6Regretπθ (T ) + d

2ε
2Eθ

[
T∑

t=1
µ̇(aT

t θ)
])

(3.42)

We finish the proof by resorting to a Taylor expansion of µ̇(aT
t θ). Formally:

T∑

t=1
µ̇(aT

t θ) ≤
T∑

t=1

[
µ̇(a?(θ)Tθ) +

∣∣∣∣
∫ 1

v=0
µ̈(a?(θ)Tθ + vθT(at − a?(θ)))dv

∣∣∣∣
∣∣∣θT(a?(θ)− at)

∣∣∣
]

Using the fact that |µ̈| ≤ µ and a?(θ)Tθ ≥ aT
t θ we obtain that:

Eθ

[
T∑

t=1
µ̇(aT

t θ)
]
≤ Eθ

[
T∑

t=1

[
µ̇(a?(θ)Tθ) + α(θ, a?(θ), at)θT(a?(θ)− at)

]]

= T

κε
+ Eθ

[
T∑

t=1
α(θ, a?(θ), at)θT(a?(θ)− at)

]

= T

κ
+ Regretπθ (T )
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where we used the mean value theorem in the last line (see for instance the beginning of the
proof of Proposition 3.4.1). Plugging this result in Equation (3.42) we obtain:

d∑

d=2
DKL(Pθ,PFlipi(θ)) ≤ 4ε2 exp(4ε)

(
6Regretπθ (T ) + d

2ε
2
(
T

κε
+ Regretπθ (T )

))

Averaging over Ξε and since by Hypothesis (3.4.1) we know that Regretπθ (T ) ≤ d
√
T/κε we

obtain the announced result.



Chapter 4

Extensions to Non-Stationary
Environments

The main goal of this chapter is to evaluate the portability of the tools we introduced so far
for the more challenging non-stationary bandit problem. In this setting, ubiquitous in real-life
scenarios, the ground truth θ? is allowed to change over time. This adds a tracking challenge on
top of the traditional learning difficulties of the bandit problem. While MAB and LB algorithms
have been successfully adapted to address this additional challenge, the non-stationary GLB case
has been relatively under-explored. We first extend our approach to a family of non-stationary
environments known as piece-wise stationary for which we show that the conclusion obtained in
the stationary case still hold. We then turn our attention to a greater class of non-stationary
environments characterized by a general notion of non-stationarity known as the variation-
budget. In this setting we show that even extending the linearization approach of Filippi et al.
(2010) is surprisingly challenging; we propose a first algorithm answering this challenge, but
leave open the question of the optimal handling of non-linearity in this more challenging setting.
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4.1 The learning problem

4.1.1 Setting and non-stationary metrics

Setting. In this chapter we consider the non-stationary Generalized Linear Bandit setting,
which extends the stationary case laid out in Section 1.3.1. The only difference comes from the
nature of the ground truth generating the rewards. Indeed, we now assume that prior to the
experiment the environment selects a sequence of parameters {θt?}Tt=1, such that the reward rt+1
generated at round t after the agent after plays at checks:

E [rt+1|Ft] = µ(aT
t θ

t
?) , (4.1)

and Var [rt+1|Ft] = µ̇(aT
t θ

t
?) . (4.2)

where µ is strictly increasing and satisfies the self-concordant property (see Assumption 1.4.1).
We shall work under the same boundedness assumptions as in the stationary setting and consider
that Assumptions 1.3.1 and 1.3.2 hold at each round t.

Dynamic regret. The focus in this chapter is on the dynamic regret:

Regretπθ1:T
?

(T ) :=
T∑

t=1
aT
?,tθ

t
? −

T∑

t=1
aT
t θ

t
? ,

where a?,t := arg maxA µ(aTθt?) is the optimal action in-hindsight at each round t.

Non-stationarity metrics. The ground truth parameter θt? is allowed to change in an arbi-
trary fashion; however, we assume that the agent has access to a non-stationarity metric which
indicates the overall evolution of the environment over the horizon T . In this chapter we will
cover two such metrics, each adapted to a particular nature of non-stationarity. The first is well
fitted for piece-wise stationary environments which undergo brutal changes at o(T ) rounds; this
is measured by the quantity ΓT which counts this number of “jumps” in the reward signal:

ΓT =
T∑

t=2
1
(
θt? 6= θt−1

?

)
.

The second fits drifting environments where the ground truth parameter can change at every
round but by a small amount; this is measured by the variation-budget BT defined as follows:

BT :=
T∑

t=2

∥∥∥θt? − θt−1
?

∥∥∥ .

In each of the considered case, we will assume that the agent has the knowledge of the relevant
non-stationary metric (or more realistically an upper-bound of it).

4.1.2 Forgetting strategies

A popular strategy to deal with non-stationarity is to resort to so-called forgetting strategies.
The main concept is to forget old information as its relevance for taking decision in the present
becomes questionable. In other words, such strategies discard the knowledge obtained by inter-
acting with the {θs?} for s� t as the associated data might not carry anymore a useful signal
about the current version of the environment θt?. This can be done in either smooth or abrupt
fashions; in the non-stationary bandit literature, the two most popular forgetting mechanisms
are sliding-windows (abrupt) and discounts (smooth).
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Piece-wise stationarity Forgetting mechanisms problems were first studied by Garivier and
Moulines (2011) who analyzed both the discount and sliding-window version of the UCB algo-
rithm in piece-wise stationary MAB settings (the discounted UCB algorithm was introduced by
Kocsis and Szepesvári (2006) but missed regret guarantees). Under a minimal gap assumption
they proved that both algorithm enjoy a Õ(

√
ΓTT ) dynamic regret upper-bounds, matching

the dynamic regret lower-bound presented in the same paper. Their approach was extended by
Russac et al. (2020) to the general GLB setting by combining it with the linearization approach
of Filippi et al. (2010). They show that both the sliding-window and discounted version of
GLM-UCB enjoy dynamic regret upper-bounds of the form Õ(κ̄µT 2/3Γ1/3

T ). The degradation of
the bound compared to (Garivier and Moulines, 2011) comes from the fact that no gap assump-
tion are made by Russac et al. (2020); actually the bound obtained by Garivier and Moulines
(2011) in the K-arm setting yields a worst case regret bound that can be shown to be of order
O(Γ1/3

T T 2/3) (see Appendix E of Russac et al. (2021)).

Drifting environments. The results obtained in the MAB piece-wise stationary setting were
paralleled by similar achievements in drifting environments by Besbes et al. (2014) who achieved
a Õ(T 2/3B

1/3
T ) dynamic regret upper-bound and prove a matching dynamic regret lower-bound.

There exists many attempts to extend this result to Linear Bandit environments; Cheung et al.
(2019b) developed dynamic policies by resorting to a sliding-window, Russac et al. (2019) in-
troduced a similar approach based on an exponential moving average, and Zhao et al. (2020)
advocated for a simpler restart-based solution. All three aforementioned approaches claim regret
bounds of the form Õ(B1/3

T T 2/3) matching the results of Besbes et al. (2014) obtained in the
MAB setting. Unfortunately, an error in their analysis was recently pointed out by Touati and
Vincent (2021). A correct analysis yields degraded regret bounds, scaling as Õ(B1/4

T T 3/4). Che-
ung et al. (2019b); Zhao et al. (2020) also introduced linearization extensions of their LB-based
algorithms to handle general GLB settings; unfortunately, their respective analyses again suffer
from important caveats and overlooks the fact that as we shall see, the linearization approach
of Filippi et al. (2010) requires important modifications in drifting environments.

4.2 Piece-wise stationary environments

We dedicate this section to extending our tools from the stationary case to the piece-wise sta-
tionary setting. Our goal is to mirror the improvements made over the linearization approach
of Filippi et al. (2010) in the non-stationary case, this time over the algorithms of Russac et al.
(2019). The first step in this direction is the derivation of the appropriate confidence sets, by
leveraging our weighted concentration inequality from Theorem 2.4.1.

4.2.1 Confidence sets

Estimators. We will consider here two forgetting mechanisms; the sliding-window and dis-
counted strategies. Both rely on the same principle, which is to discard old information when
estimating the current version θt? of the environment. This can be formalized by introducing a
general weighted quasi-maximum likelihood estimator:

θ̂wt := arg min
θ∈Θ

{
Lwt (θ) :=

t−1∑

s=1
wt−1−s

[
b(aT

s θ)− rs+1a
T
s θ
]

+ λ ‖θ‖2 /2
}
,
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where {wt}Tt=1 is a sequence of deterministic weights in the interval [0, 1]. As in the stationary
case we will use the Hessian of the associated log-loss;

Hw
t (θ) :=

t−1∑

s=1
µ̇(aT

s θ)wt−1−sasaT
s + λtId .

as well as the notation gt(θ) = ∑t−1
s=1wt−1−sµ(aT

s θ)as + λtθ. The sliding-window estimator
simply discards data that was obtained more than D time steps ago, where D ∈ N is an hyper-
parameter dictating the length of the sliding-window. Formally, this estimator is obtained by
setting wt−1−s = 1(s ≥ t−D). The discount strategy follows a smoother approach and applies
weights which gets smaller as the data gets older. Formally, for γ ∈ (0, 1) it is obtained by
setting wt−1−s = γt−1−s. In the rest of this chapter we replace the index “w” in all notations by
“SW” (resp. “ED”) whenever we refer to their sliding-window (resp. exponentially discounted)
versions.

Remark 4.2.1. The two strategies are obviously quite similar and undergo the same type of
analysis. In particular for the discount strategy it is important to define an effective window-
size D for the discounted strategy, which correspond to the rounds s ∈ [t−1−D, t−1] for which the
weights γt−1−s are non-negligible. In the discounted approach this is a purely analytical quantity,
defined by introducing a condition of the type: γD = 1/T 2, yielding D = 2 log(T )/ log(1/γ). In
the following we willingly confuse it with the memory length of the sliding window estimator as
both play the same conceptual role.

Confidence sets. An important concept when studying forgetting mechanisms in piece-wise
stationary settings is that there necessarily exists some continuous blocks of rounds on which the
environment is stationary, and that are far enough from breakpoints so that the dominant terms
in the estimators are all generated by the same ground truth parameter. On such blocks, we
can repeat the analysis that was conducted in the stationary case. Formally, we are interested
in the following set of rounds:

TD :=
{
t ∈ [T ], θt? = θs? for all s ∈ [max(1, t−D), t− 1]

}
.

Leveraging Theorem 2.4.1 along with some simple upper-bounding allows to construct confidence
sets for θt? at each round t ∈ TD, as detailed in the following theorem. The proof is deferred to
Appendix 4.A. We will use the notation:

νt(δ) :=
√
λt(S + (2σ)−1) + σd√

λt
log
(
4T (1 + σ2D/(dλt))/δ)

)
.

Note that for λt = d log(2 + t) we still have ν̄T (δ) = maxt∈[T ] νt(δ) = O(
√
d log(T/δ)).

Theorem 4.2.1 (Variance-sensitive confidence sets based on forgetting estimators). Let δ ∈
(0, 1] and define the following sets:

CSW
t (δ) :=

{
θ ∈ Θ,

∥∥∥gSW
t (θ)− gSW

t (θ̂SW
t )

∥∥∥
HSW
t (θ)−1

≤ νt(δ)
}
,

CED
t (δ) :=

{
θ ∈ Θ,

∥∥∥gED
t (θ)− gED

t (θ̂ED
t )
∥∥∥

HED
t (θ)−1

≤ νt(δ) + 2(SL̄µ + σ)γD/(1− γ)
}
.

The events {∀t ∈ TD, θt? ∈ CSW(δ)
t } and {∀t ∈ TD, θt? ∈ CD(δ)

t } hold with probability at least 1− δ.
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Algorithm 7 OFU-GLB-SW
input: Arm set A, regularization coefficients {λt}t, failure level δ, admissible parameter set Θ,

sliding-window size D.
Set H1 ← λ1Id, θ̂SW

1 ← 0d.
for t ∈ [1, T ] do
Solve at ∈ arg maxAmaxθ∈CSW

t (δ) a
Tθ. . planning

Play the arm at and observe reward rt+1.
Update the estimator θ̂SW

t+1 and the confidence interval CSW
t (δ). . learning

end for

As can be expected, both confidence sets have a similar structure. However because the dis-
counted strategy keeps track of all past interactions (the weights are never truly zero, unlike
for the sliding window strategy) the radius of the confidence set is augmented by an additive
constant which depends on L̄µ. This may feel like a miss; the goal behind such confidence sets
is indeed to reduce the dependencies w.r.t the reward sensitivity constants in order to achieve
improved tightness. Fortunately this additive term is truly a negligible second-order term. It
indeed scales with γD which we saw in Remark 4.2.1 is typically o(1) for the values of D that
are chosen at analytical time.

4.2.2 Algorithms and regret upper-bounds

Equipped with the confidence sets from the previous section the design of the non-stationary
GLB algorithm is straight-forward and re-employs the parameter-search optimistic approach of
the previous chapter. Formally OFU-GLB-SW follows the strategy:

play at ∈ arg max
a∈A

max
θ∈CSW

t (δ)
aTθ ,

while OFU-GLB-D uses the discount-based confidence set:

play at ∈ arg max
a∈A

max
θ∈CED

t (δ)
aTθ .

For the sake of completeness, we give the pseudo-code of OFU-GLB-SW in Algorithm 7. The
following theorem states the regret upper-bounds for those two algorithms and improves over
the results presented in Russac et al. (2021). The proof of the first claim is deferred to the
following section; the second is proven by directly replicating the bounding strategy. We use the
following notation for the averaged reward sensitivity at the optimal action:

`?µ :=
T∑

t=1
µ̇(aT

?,tθ
t
?)/T . (4.3)

Theorem 4.2.2 (Regret bounds for forgetting strategies). Let δ ∈ (0, 1]. When setting D =
(T/ΓT )2/3 (resp. γ = 1 − (T/ΓT )2/3) the dynamic regret of OFU-GLB-SW (resp. OFU-GLB-D)
satisfies with probability at least 1− δ:

Regretθ1:T
?

(T ) = Õ
(
T 2/3Γ1/3

T

(
d log(T/δ)

√
`?µ + L̄µ

)
+ T 1/3Γ2/3

T d2 log(T/δ)2
(
1 + L̄µ/`µ + L̄2

µ

))
.

A few comments are in order. The first-order term of the regret bounds presented in Theo-
rem 4.2.2 present a similar structure as in the stationary case; in the long-run, whats matters
is the reward sensitivity around the optimal action (here, its averaged version `?µ. In contrast
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with the stationary case the maximal reward sensitivity L̄µ also plays a role in this first-order
term; as it will become clear in the analysis, this term is linked to an irreducible regret that the
algorithms suffers after a switch of the reward signal. As in the stationary case, the effects of
non-stationary embodied by the ratio L̄µ/`µ are deferred to a second-order term of the regret.
Note that the first-order term matches the rates of the regret bound of similar algorithms in
the MAB setting, when no minimal gap assumption are made. Finally, those regret bounds are
obtained under knowledge of ΓT ; in practical case where ΓT is unknown this can be alleviated
by a Bandit-over-Bandit approach (see Cheung et al. (2019b)) with little cost on the regret.
Remark (About the bonus-based version). The non-stationary setting further highlights the
difference between the exploration-bonus and parameter-search approaches. Indeed we were not
able to derive similar bounds for the bonus-based approach laid out in Russac et al. (2021); in the
non-stationary setting one cannot guarantee that the set of information-preserving parameters
(which is required in the stationary bonus version) is not empty. While this is most probably an
analysis issue, it highlights the superiority from an analysis viewpoint of the parameter-search
approach in non-linear parametric bandit problems.

4.2.3 Sketch of proof for the sliding-window strategy

We provide here the sketch of proof for the regret upper-bound of OFU-GLB-SW. The proof starts
by decomposing the dynamic regret over rounds in or out of TD.

Regretθ1:T
?

(T ) =
T∑

t=1
µ(aT

?,tθ
t
?)− µ(aT

t θ
t
?)

=
T∑

t=1
[µ(aT

?,tθ
t
?)− µ(aT

t θ
t
?)]1(t ∈ TD)

︸ ︷︷ ︸
RT

+
T∑

t=1
[µ(aT

?,tθ
t
?)− µ(aT

t θ
t
?)]1(t /∈ TD) .

Note that there are at most DΓT rounds outside of TD; on such rounds the instantaneous regret
can be maximal - at worse 2SL̄µ. In other words;

T∑

t=1
[µ(aT

?,tθ
t
?)− µ(aT

t θ
t
?)]1(t /∈ TD) ≤ 2SL̄µDΓT .

We now turn our attention to rounds in TD. We will work under the event {∀t ∈ TD, θt? ∈
CSW(δ)
t } which according to Theorem 4.2.1 holds with probability at least 1 − δ. Denote θ̃t ∈

arg maxθ∈CSW
t (δ) a

T
t θ; by the optimism property we have that aT

t θ̃t ≥ aT
?,tθ

t
? for all t ∈ TD.

Applying this property followed by a second-order Taylor expansion we obtain:

RT =
T∑

t=1
[µ(aT

?,tθ
t
?)− µ(aT

t θ
t
?)]1(t ∈ TD) ,

≤
T∑

t=1
[µ(aT

t θ̃t)− µ(aT
t θ

t
?)]1(t ∈ TD) ,

≤
T∑

t=1

[
µ̇(aT

t θ
t
?)aT

t (θ̃t − θt?) + L̄µ
(
aT
t (θ̃t − θt?)

)2
/2
]
1(t ∈ TD) .

We prove in Appendix 4.B that under the event {∀t ∈ TD, θt? ∈ CSW(δ)
t } for all t ∈ TD:

∥∥∥θ̃t − θt?
∥∥∥

HSW
t (θt?)

≤ 2(1 + 2S)νt(δ) . (4.4)
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After applying the Cauchy-Schwarz inequality to our bound on RT we obtain:

RT ≤ 2(1 + 2S)νt(δ)
T∑

t=1
µ̇(aT

t θ
t
?) ‖at‖HSW

t (θt?)−1 1(t ∈ TD)

+2(1 + 2S)2νt(δ)2L̄µ/`µ

T∑

t=1
‖at‖2(VSW

t )−1 1(t ∈ TD) , (4.5)

where VSW
t = ∑t−1

s=max(t−D,1) asa
T
s + (λt/`µ)Id. The second term can be bounded thanks to a

repeated application of the Elliptical Potential lemma on the right decomposition of TD. The
proof of the following bound is purely technical so we defer it to Appendix 4.C:

T∑

t=1
‖at‖2(VSW

t )−1 1(t ∈ TD) ≤ 2dT/Ded log(λT + T ¯̀
µ/d) (4.6)

Similarly the first term in Eq. (4.5) is bounded by deriving the piece-wise stationary version of
Lemma 3.1.2; formally, it writes:

T∑

t=1
µ̇(aT

t θ
t
?) ‖at‖HSW

t (θt?)−1 1(t ∈ TD) ≤
√

2dT/Ded log(λT + T/d)

√√√√
T∑

t=1
µ̇(aT

t θ
t
?)

+ 2dT/DedL̄2
µ log(λT + L̄µT/d) . (4.7)

The proof of this bound is given in Appendix 4.D. Following the proof for the stationary case
and using the self-concordance property it is easy to show that:

√√√√
T∑

t=1
µ̇(aT

t θ
t
?) ≤

√√√√
T∑

t=1
µ̇(aT

?,tθ
t
?) +

√
Regretθ1:t

?
(T )

=
√
T`?µ +

√
Regretθ1:t

?
(T ) . (4.8)

with `?µ defined in Eq. (4.3). By denoting f(T ) := (1+2S) max(1, νt(δ))
√
d log(λT + max(1, L̄µ)T/D)

and assembling Eqs. (4.5) to (4.8) we obtain after some simple-upper bounding:

RT ≤ 4f(T )2(L̄µ/`µ + L̄2
µ)dT/De+ 4

√
dT/Def(T )(

√
`?µT +

√
Regretθ1:t

?
(T )) .

Injecting into our initial bound on Regretθ1:t
?

(T ) we obtain:

Regretθ1:t
?

(T ) ≤ 2SL̄µDΓT + 4f(T )2(L̄µ/`µ + L̄2
µ)
⌈
T

D

⌉
+ 4

√⌈
T

D

⌉
f(T )(

√
`?µT +

√
Regretθ1:t

?
(T )) .

Solving it leads to:

Regretθ1:t
?

(T ) ≤ 8
⌈
T√
D

⌉
f(T )

√
`?µ + 4SL̄µDΓT + 8

⌈
T

D

⌉
f(T )2(1 + L̄µ/`µ + L̄2

µ) .

We have left to tune the length D of the sliding-window. Choosing D = T 2/3Γ−2/3
T yields:

Regretθ1:t
?

(T ) ≤ T 2/3Γ1/3
T

(
8f(T )

√
`?µ + 4SL̄µ

)
+ 8T 1/3Γ2/3

T f(T )2
(
1 + L̄µ/`µ + L̄2

µ

)
.

Realizing that f(T ) = O(d log(T/δ)) yields the desired result.
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4.3 Drifting environments
The treatment of drifting environments reveals to be more complex; as anticipated earlier and
further detailed later in this section, even in the linear case current analyses show a gap with the
known minimax-rates obtained in the MAB setting. In the GLB setting, things are even more
blurred; as we shall see, even the linearization step introduced by Filippi et al. (2010) shows its
limits and requires generalization.
For this reason we slightly switch gears in this section; we keep the discussion to a high-level

to illustrate the difficulties and remaining challenges in this particular non-stationary setting.
Furthermore, we shall put aside our on-going study of the effects of non-linearity; the prime focus
is simply to obtain the first valid regret bound for drifting GLBs by generalizing the projection
step of Filippi et al. (2010) . The technical details, the different algorithms and the proof of
their regret guarantees can be found by the interested reader in Faury et al. (2021).

4.3.1 Motivation and Challenges

On the limits of piece-wise stationarity. The piece-wise stationarity measure ΓT is poorly
suited to drifting environments as in such settings it can grossly overestimate the importance of
the non-stationarity. In such case, any algorithm based on this measure will be sub-optimal and
discard too fast previous data, quickly judged uninformative since the level of non-stationarity
is expected to be high. This is typically the case in environments with many switches of small
amplitude, characteristic of smooth drifts (e.g user-fatigue in recommender systems). On the
contrary, the variation-budget metric BT introduced and discussed in Besbes et al. (2014, Section
2), allows for much finer considerations. It stands as a powerful characterization of the non-
stationarity, measuring the number of switches and their amplitude jointly. As a result, it can
efficiently cover a larger spectrum of scenarios

Existing work, linear case. In the linear case, all approaches discussed hereinbefore follow
this general path and announce regret rates of the form:

Regretθ1:t
?

(T ) = Õ
(
B

1/3
T T 2/3

)
.

It turns out that this rate can only hold with a relatively strong assumption on the geometry
of the arm sets A (at least with the existing analysis). In the general case, a correct analysis
yields a degraded rate which does not match the lower-bound of Cheung et al. (2019b). A strong
conceptual advantage (at least from an analysis point of view) of forgetting strategies is that
it allows for a natural decoupling of the learning and tracking aspects of non-stationary bandit
problems. At each round t, the learning aspect is rooted in the noisy nature of the environment,
which blurs the sequence of {θ?s}t−1

s=1 that generated observed rewards. The learning guarantees of
forgetting policies can be extended from existing stationary analyses (e.g, Abbasi-Yadkori et al.,
2011). This fundamentally requires an on-policy approach: deviations can only be measured in
the directions that were played. Practically speaking, this means that the right metric to derive
confidence intervals is ‖·‖Vt where Vt = ∑t−1

s=1ws,tasa
>
s + λId. On the other hand, the tracking

aspect is inherited from the drift of θt−1
? to θt? which induces an incompressible estimation error.

It is therefore fundamentally tied to the variation-budget BT , which is an off-policy metric (i.e
independent of the trajectory that was played) characterized by the `2 norm. Both aspects are
conflicting sources of regret; reaching optimality requires finding the correct balance between
the two of them. Naturally, the tracking error can only be observed (at least at analysis time) in
the directions that were actually played by the algorithm and for which rewards were collected.
Henceforth, the main challenge when controlling the tracking error lies in converting its on-
policy version to its off-policy counterpart (which is BT ). This is where current approaches
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make a mistake by claiming that this can be done at no cost on the regret. If specializing to the
sliding-window mechanism, the error can be traced back to the following statement:

∀t ≤ T,
∥∥∥∥∥∥
V−1
t

t−1∑

s=t−D
asa
>
s (θs? − θt?)

∥∥∥∥∥∥
2

≤
t−1∑

s=t−D
‖θs? − θs+1

? ‖ , (4.9)

which links the deviation between θt? and θs? in each direction as (on-policy) to the variation-
budget over the length of the sliding window (off-policy). Such a statement appears several
times in the literature, for instance in (Cheung et al., 2019b, Appendix B), (Russac et al., 2019,
Appendix B.3) and (Zhao et al., 2020, Appendix A). Unfortunately, this is in general false.
The approach followed by previous works ties the left-hand side of Equation (4.9) to λmax, the
highest eigenvalue of the matrix V−1

t

∑t−1
s=t−D asa

>
s . They then proceed to show that the latter is

smaller than a universal constant (one which does not depend on the dimension d or the sliding-
window’s length D). The first step of this reasoning is false; indeed, V−1

t

∑t−1
s=t−D asa

>
s being

not a symmetric matrix, its operator norm cannot be bounded by its larger eigenvalue; actually,
one can easily design counter-examples where the two are arbitrarily different. This indicates
that the impact of this mistake on the validity of the regret bound is significant; the matrix
V−1
t

∑t−1
s=t−D asa

>
s being dependent of the algorithm’s behavior, we cannot, in all generality,

discard a-priori the events that such counter-examples arise. We can however look at sufficient
conditions for the current analysis to hold. In particular, it is sufficient that V−1

t

∑t−1
s=t−D asa

>
s

is a symmetric matrix. Equivalently, we can require for the two positive semidefinite matrices
V−1
t and∑t−1

s=t−D asa
>
s to share the same basis of eigenvectors. This is a strong requirement; not

only should it hold for all t ≤ T , but furthermore such matrices are generated by the algorithm
itself. This co-diagonalizability requirement must therefore hold for virtually any sequence of
arms {as}! The only reasonable situation where this can be verified arises when it is de-facto
imposed by the geometry of the action set A; for instance, when A lies along an orthogonal
basis.

Proposition 4.3.1. Let {ei}di=1 be an orthonormal basis of Rd and A be such that for all
x ∈ A, there exists α ∈ R, i ∈ [1, d] such that x = αei. Then on the non-stationary LB problem,
forgetting strategies achieve a regret upper-bound of the form Regretθ1:t

?
(T ) = Õ(B1/3

T T 2/3).

A correct treatment of the tracking error in the general case was recently proposed by (Touati
and Vincent, 2021, Section 5). They showed that a correct bounding of the left-hand side of
Equation (4.9) leads to the following control of the tracking error:

∀t ≤ T,
∥∥∥∥∥∥
V−1
t

t−1∑

s=t−D
asa
>
s (θs? − θt?)

∥∥∥∥∥∥
2

≤
√
dD

t−1∑

s=t−D
‖θs? − θs+1

? ‖ .

The apparition of the sliding-window’s length D in this bound eventually shifts its optimal value
(in terms of learning v.s tracking regret balance) and yields degraded rates.

Proposition 4.3.2 (Touati and Vincent (2021)). Under general arm-set geometry, forgetting
strategies achieve a regret upper-bound of the form Regretθ1:t

?
(T ) = Õ

(
B

1/4
T T 3/4

)
on the non-

stationary LB problem.

Extension to GLBs. (Cheung et al., 2019b; Zhao et al., 2020) extended their LB analysis to
GLBs. With the exception of an inflation of the exploration bonus to account for non-linearity,
their algorithm remains the same. They claim the following regret upper-bound:

Regretθ1:t
?

(T ) = Õ
(
κ̄µB

1/3
T T 2/3

)
,
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which stands as a natural extension of the existing stationary bounds from Filippi et al. (2010).
Not only does the previous remark regarding the validity of the rates (w.r.t T and BT ) passes
on to this setting, their approach also disregards the fundamental non-linear aspect of GLBs.
Following Filippi et al. (2010) they rely on a linearization of the reward function around θ̂t.
Naturally, the linear approximation must accurately describe the effective behavior of the reward
signal (characterized by the ground-truth θt?). From the assumption that

∥∥θt?
∥∥ ≤ S for all t ∈ [T ]

this translates in the structural constraint θ̂t ∈ Θ, which is implicitly assumed to hold in previous
attempts. Unfortunately, there exists no proof guaranteeing that θ̂t ∈ Θ could hold. Actually,
existing deviation bounds (Abbasi-Yadkori et al., 2011, Theorem 1) rather suggest that in some
directions, even in the stationary case, θ̂t can grow to be

√
d log(t) far from Θ. The situation is

worse under non-stationarity since θ̂t can be Bt far from Θ. This flaw in the analysis is critical
and cannot be easily fixed without severely degrading the regret guarantee. When θ̂t /∈ Θ, this
impacts the ratio κ̄µ which captures the degree of non-linearity of the inverse link function. For
the highly non-linear logistic function we have seen that κ̄µ ≥ eS . If we were to inflate the radius
of the admissible set Θ from S to S + δS (so that it contains θ̂t), the estimated non-linearity
of the reward function would be even stronger and Rµ would be multiplied by a factor eδS !
Because the regret bound scales linearly with this quantity, this exponential growth would lead
to prohibitively deficient performance guarantees.

Challenges. Filippi et al. (2010) countered the aforementioned difficulty by introducing a
projection step, mapping θ̂t back to an admissible parameter θ̃t ∈ Θ. The latter is then used to
predict the performance of the available actions. Their projection step essentially incorporates
the prior knowledge θ? ∈ Θ without degrading the learning guarantees of the maximum likelihood
estimator. The situation is different here as under parameter drift one needs to preserve both the
learning and tracking guarantees of θ̂t. However, and as previously discussed, both mechanisms
have different dynamics and are characterized by different metrics. This leads to a tension in
the design of the projection as this requires to incorporate the knowledge {θt?} ∈ Θ, without
degrading neither the learning nor the tracking guarantees. This situation therefore calls for a
generalization of the projection step of Filippi et al. (2010), in order to adapt to both sources
of deviation.

4.3.2 A linearization algorithm

We provide in this section such a generalization. The main idea is to compute the optimal
translation under the tracking metric of the confidence set characterized by the learning metric.
We illustrate this idea in Figure 4.1.

The algorithm. The algorithmic idea to generalize the projection step of Filippi et al. (2010)
is the same regardless of the forgetting mechanism that is chosen. We focused in the previous
chapter on the sliding-window approach; we illustrate here the exponential-weight discount
mechanism. Recall that our goal here is not to focus on the effects of non-linearity (embodied
by the reward sensitivity constants) but rather on obtaining non-trivial regret bounds w.r.t
d and T in the non-linear drifting setting. Therefore to simplify matter we will consider in
the following a bonus-based approach. It operates in two steps; (1) the computation of an
appropriate admissible parameter θ̃t ∈ Θ (to be used for predicting the rewards associated with
the actions a ∈ At available at round t) and (2) the construction of a suitable exploration bonus
to compensate for prediction errors. The first step builds on the following set, linked to the
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Θ Eδt (θ̂t)Eδt (θ̂t)Eδt (θ̂t)

Eδt (θpt )Eδt (θpt )Eδt (θpt )

θ̂t

θ̄t
θt?

θpt
θ̃t

∝Bt∝Bt∝Bt

∝Bt∝Bt∝Bt

Figure 4.1: Illustration of the generalized projection step. The confidence set Eδt (θ̂t) is obtained
by leveraging the learning guarantees of the estimator θ̂t. It concentrates around θ̄t, which tracks
the sequence {θs?}t−1

s=1 and contrary to the stationary case can lie outside Θ. Our solution involves
finding a translation θpt of θ̂t such that the confidence set centered at this new reference point
effectively intersects Θ, say at θ̃t. This translation occurs in a metric that preserves the tracking
guarantees of θ̄t. The deviations (θpt ↔ θ̂t) and (θ̄t ↔ θt?) are linked to the parameter-drift Bt.
On the other hand, the deviations (θ̂t ↔ θ̄t) and (θ̃t ↔ θpt ) are characterized by the stochastic
nature of the problem.

deviation incurred through the learning process:

Eδt (θ) :=
{
θ′ ∈ Rd s.t

∥∥∥gED
t (θ′)− gED

t (θ)
∥∥∥

(VED
t )−1

≤ βt(δ)
}
, (4.10)

where VED
t = ∑t−1

s=1 γ
t−1−sasaT

s +(λ/¯̀
µ)Id1 and βt(δ) =

√
λS+σ

√
2 log(1/δ) + d log

(
1 + ¯̀

µ(1−γ2t)
λd(1−γ2)

)
.

We start by identifying an intermediary parameter θpt , solution of the following constrained op-
timization program (ties can be broken arbitrarily):

θpt ∈ arg min
θ∈Rd

{∥∥∥gED
t (θ)− gED

t (θ̂ED
t )
∥∥∥

V−2
t

s.t Θ ∩ Eδt (θ) 6= ∅
}
. (4.11)

This optimization program is well-posed as it consists in minimizing a smooth function over a
non-empty compact set ({θ s.t Θ ∩ Eδt (θ) 6= ∅} always contains 0d). Once θpt is computed, the
algorithm simply chooses any parameter θ̃t ∈ Θ ∩ Eδt (θpt ).

Remark 4.3.1. Notice the difference with the projection step used in the stationary case. In
our case it is possible that Eδt (θ̂t) (which is the confidence set centered at θ̂ED

t ) does not intersect
the admissible set Θ. Our strategy for finding θ̃t is then to compute an appropriate “vibration”
Eδt (θpt ) of Eδt (θ̂ED

t ) which does intersect Θ, while minimizing the deviation between θpt and θ̂ED
t

according to a metric related to the tracking error (through the map gED
t and the squared inverse

of the design matrix). Note that the procedure to find θ̃t can be simplified; it is equivalent to
directly solving:
(
θ̃t
ηpt

)
∈ arg min
θ′∈Rd,η∈Rd

{∥∥∥gED
t (θ′) + βt(δ)(VED

t )1/2η − gED
t (θ̂ED

t )
∥∥∥

V−2
t

s.t
∥∥θ′
∥∥ ≤ S, ‖η‖ ≤ 1

}
. (4.12)

1Throughout this section we set λt = λ for all t
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The exploration bonus at round t for a given arm a ∈ A is defined as εt(a) = 2κ̄µβt(δ)‖a‖(VED
t )−1

t
The algorithm follows an optimistic strategy by boosting the predicted reward associated with
θ̃t by εt(a) and playing :

at ∈ arg max
a∈At

µ(aTθ̃t) + εt(a) .

Regret guarantees. As in the linear case, we can recover the minimax rates with sufficient
assumptions on the arm-set geometry.

Proposition 4.3.3. Let {ei}di=1 be an orthonormal basis of Rd and A be such that for all
a ∈ A, there exists α ∈ R, i ∈ [1, d] such that a = αei. Then forgetting strategies achieve a
regret upper-bound of the form Regretθ1:t

?
(T ) = Õ(κ̄µB1/3

T T 2/3) on the drifting GLB problem.

For general arm-set geometry, sub-linear rates can still be recovered however with a sensibly
more serious degradation than in the linear case. The culprit for this deterioration remains
conceptually the same: the transfer from the on-policy to the off-policy tracking error comes at
an additional cost due to the non-linearity of the reward function.

Proposition 4.3.4. Under general arm-set geometry, forgetting strategies achieve a regret
upper-bound of the form Regretθ1:t

?
(T ) = Õ

(
κ̄µB

1/5
T T 4/5

)
on the non-stationary GLB problem.

One will notice the presence in the bound of the ratio κ̄µ, typical of the linearization approach.
This regret bound is therefore quite natural and extends the work of Filippi et al. (2010) to
drifting worlds. We emphasize that if the result seems unsurprising, it required a substantially
different machinery, both for the design of the algorithm and its analysis.

4.3.3 Sketch of proof

In this section, we detail the key steps to prove the aforementioned regret bounds. In particular,
we shed light on the tension between the learning and tracking aspects of the problem and
their role in the choice of the estimator θ̃t, through the use of an appropriate projection step.
For simplicity we will only consider here orthogonal arm-sets; the spirit of the proof is almost
identical in the general case.

Learning versus tracking. A crucial feature of non-stationary GLBs lies in the singular na-
ture of the deviation of θ̂ED

t from θt?. This arises from two fundamentally different mechanisms:
learning and tracking. We introduce the following estimator, which allows for a clean-cut dis-
tinction between the two phenomenons:

θ̄t := arg min
θ∈Rd

(
t−1∑

s=1
γt−1−s

[
b(aT

s θ)− µ(aT
s θ

s
?)aT

s θ
]

+ (λ/2)
∥∥∥θ − θt?

∥∥∥
2
)
. (4.13)

The parameter θ̄t is the minimizer of a strictly convex and coercive function, thus is well-defined
and unique. Intuitively, θ̄t would be the estimator obtained under a perfect (e.g noiseless)
observation of the reward2. As a result, the deviation between θ̂ED

t and θ̄t is solely due to the
stochastic nature of the problem (learning). On the other hand, the deviation between θ̄t and θt?
is a consequence of the unpredictable changes of the sequence {θs?}s (tracking). The introduction
of the reference point θ̄t allows us to characterize both deviations separately in Lemma 4.3.1
and Lemma 4.3.2.

2Note the difference between θ̂t and θ̄t, where the rewards rt+1 are replaced by their conditional expected
values µ(aT

s θ
s
?)
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Lemma 4.3.1. [Learning] Let δ ∈ (0, 1]. With probability at least 1− δ:

for all t ≥ 1, θ̄t ∈ Eδt (θ̂ED
t ) =

{
θ ∈ Rd s.t

∥∥∥gED
t (θ)− gED

t (θ̂ED
t )
∥∥∥

(VED
t )−1

≤ βt(δ)
}
.

Lemma 4.3.1 ensures that with high probability the set Eδt (θ̂ED
t ) is a confidence set for θ̄t.

Lemma 4.3.2. [Tracking with orthogonal action sets] Let D ∈ N∗. The following holds:

‖gED
t (θ̄t)− gED

t (θt?)‖(VED
t )−2 ≤ 2L̄µS

λ

γD

1− γ + L̄µ

t−1∑

s=t−D

∥∥∥θs? − θs+1
?

∥∥∥ .

Lemma 4.3.2 effectively links the deviation of θ̄t from θt? to the variation-budget BT through the
drift ∑t−1

s=t−D
∥∥θs? − θs+1

?

∥∥. The proof of this result borrows tools from Russac et al. (2019). The
integer D appearing in Lemma 4.3.2 is introduced for the sake of the analysis only. It allows to
treat separately old and recent observations. We provide its optimal value later in this section.

Remark 4.3.2. Behind the statement of Lemma 4.3.1 and Lemma 4.3.2 hides the main reason
why the projection step of Filippi et al. (2010) needs to be generalized. Indeed, it appears that
the deviations (θ̂ED

t ↔ θ̄t) and (θ̄t ↔ θt?) are controlled through different metrics ( (VED
t )−1 and

(VED
t )−2, respectively). Projecting according to the first metric would corrupt the control of the

second deviation, and conversely.

Regret decomposition and prediction error. To bound the instantaneous regret at round
t, we rely on the prediction error ∆t defined as follows for any arm a ∈ A:

∆t(a) :=
∣∣∣µ(aTθ̃t)− µ(aTθt?)

∣∣∣ .

The next Lemma ties the cumulative pseudo-regret to the sum of prediction errors.

Lemma 4.3.3. The following holds:

Regretθ1:t
?

(T ) ≤ 2κ̄µ
T∑

t=1
βt(δ)

[
‖at‖(VED

t )−1 − ‖a?,t‖(VED
t )−1

]
+

T∑

t=1
[∆t(at) + ∆t(a?,t)] .

Thanks to Lemma 4.3.3 we are left to characterize the prediction error ∆t(a) for any a ∈ A. To
do so we rely on the mean-value theorem to ensure that it exists θ̊t ∈ [θ̃t, θt?] such that3:

∆t(a) ≤ L̄µaT
t HED

t (θ̊t)
(
gED
t (θ̃t)− gED

t (θt?)
)
, (4.14)

Since θ̃t, θt? ∈ Θ, we obtain θ̊t ∈ Θ and we can use the lower bound HED
t (θ̊t) � ¯̀

µVED
t .

Remark 4.3.3. In this last inequality resides the mistake that was made in previous extension
of Filippi et al. (2010) to the non-stationary setting (Cheung et al., 2019a; Zhao et al., 2020).
Indeed, if the prediction error is measured at θ̂t, we are left with θ̊t ∈ [θt?, θ̂ED

t ], and θ̊t can lie
outside of the admissible set Θ (since θ̂t can). The lower-bound linking HED

t (θ̊t) and VED
t would

therefore not hold. More precisely when θ̊t ∈ [θt?, θ̂ED
t ] not much can be said on the link between

HED
t (θ̊t) and VED

t without severely degrading the final regret guarantees.
3Formally, θ̊t ∈ [θ̃t, θt?] means that there exists v ∈ [0, 1] such that θ̊t = vθ̃t + (1− v)θt?.
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Adding and removing gED
t (θ̂ED

t ) + gED
t (θpt ) + gED

t (θ̄t) inside the inner-product in Equation (4.14),
followed by easy manipulations yields:

∆t(a) ≤ κ̄µ ‖a‖(VED
t )−1

(∥∥∥gED
t (θ̃t)− gED

t (θpt )
∥∥∥

(VED
t )−1

+
∥∥∥gED
t (θ̄t)− gED

t (θ̂t)
∥∥∥

(VED
t )−1

)

︸ ︷︷ ︸
:=∆learn

t (a)

+ κ̄µ ‖a‖
(∥∥∥gED

t (θpt )− gED
t (θ̂t)

∥∥∥
(VED

t )−2
+
∥∥∥gED
t (θ̄t)− gED

t (θt?)
∥∥∥

(VED
t )−2

)

︸ ︷︷ ︸
:=∆track

t
(a)

.

Leveraging the projection step We can now bound the terms ∆learn
t (x) and ∆track

t (x)
separately. Lemma 4.3.1 along with the design θ̃t ∈ Eδt (θpt ) leads to:

∆learn
t (a) ≤ 2κ̄µ ‖a‖(VED

t )−1 βt(δ) w.h.p (4.15)

The first term in ∆track
t (a) is kept under control by the specific design of the projection step.

Lemma 4.3.4. Under the event {θ̄t ∈ Eδt (θ̂ED
t )} the following holds:

‖gED
t (θpt )− gED

t (θ̂t)‖(VED
t )−2 ≤ ‖gED

t (θ̄t)− gED
t (θt?)‖(VED

t )−2 .

As a result, bounding ∆track
t (a) reduces to bounding ‖gED

t (θ̄t)−gED
t (θt?)‖(VED

t )−2 . Combined with
Lemma 4.3.2, this result states that the deviation between θpt and θ̂t is characterized by Bt, the
parameter-drift up to round t, as illustrated in Figure 4.1. This leads to:

∆track
t (a) ≤ 2κ̄µ ‖a‖2


2L̄µL2S

λ

γD

1− γ + L̄µ

t−1∑

s=t−D

∥∥∥θs? − θs+1
?

∥∥∥


 w.h.p (4.16)

Putting everything together. Combining Equations (4.15) and (4.16) with Lemma 4.3.3
and the Elliptical Lemma yields:

Regretθ1:t
?

(T ) ≤ C1κ̄µdT log(1/γ) + C2κ̄µγ
DT/(1− γ) + C3κ̄µDBT w.h.p

where the constants C1, C2 and C3 hide log(T ) multiplicative dependencies. Setting the hyper-
parameters D = log(T )/(1− γ) and γ = 1− (BTdT )2/3 concludes the proof.



Appendix
Appendix 4.A Proof of Theorem 4.2.1

Theorem 4.2.1 (Variance-sensitive confidence sets based on forgetting estimators). Let δ ∈
(0, 1] and define the following sets:

CSW
t (δ) :=

{
θ ∈ Θ,

∥∥∥gSW
t (θ)− gSW

t (θ̂SW
t )

∥∥∥
HSW
t (θ)−1

≤ νt(δ)
}
,

CED
t (δ) :=

{
θ ∈ Θ,

∥∥∥gED
t (θ)− gED

t (θ̂ED
t )
∥∥∥

HED
t (θ)−1

≤ νt(δ) + 2(SL̄µ + σ)γD/(1− γ)
}
.

The events {∀t ∈ TD, θt? ∈ CSW(δ)
t } and {∀t ∈ TD, θt? ∈ CD(δ)

t } hold with probability at least 1− δ.

Proof. The sliding-window result is actually a direct corollary of Theorem 2.2.1. Indeed for any
t ∈ TD we know that θs? = θt? for any s ∈ [t−D, t]. Fix t ∈ TD and denote for simplicity θt? = θ?;
by characterization of the weighted maximum-likelihood estimator:

∥∥∥gSW
t (θt?)− gSW

t (θ̂SW
t )

∥∥∥
HSW
t (θt?)−1

≤
∥∥∥∥∥∥

t−1∑

s=t−D
[µ(aT

s θ
t
?)− rs+1]as

∥∥∥∥∥∥
HSW
t (θt?)−1

+ λ
∥∥∥θt?
∥∥∥

HSW
t (θt?)−1

≤
∥∥∥∥∥∥

t−1∑

s=t−D
[µ(aT

s θ
t
?)− µ(aT

s θ
s
?)]as +

t−1∑

s=t−D
ηs+1as

∥∥∥∥∥∥
HSW
t (θt?)−1

+
√
λtS

=

∥∥∥∥∥∥

t−1∑

s=t−D
ηs+1as

∥∥∥∥∥∥
HSW
t (θt?)−1

+
√
λtS ,

where we defined ηs+1 = µ(aT
s θ

t
?) − rs+1 = µ(aT

s θ?) − rs+1. Thanks to Eqs. (4.1) and (4.2) we
have that E[ηs+1|Fs] = 0 and Var(ηs+1|Fs) = µ̇(aT

s θ?). Furthermore we have that:

HSW
t (θt?) =

t−1∑

s=t−D
µ̇(aT

s θ
t
?)asaT

s + λtId

=
t−1∑

s=t−D
µ̇(aT

s θ?)asaT
s + λtId

Therefore we can directly apply the same concentration inequality we used in the stationary
case (see Theorem 2.2.1) to obtain after some simple upper-bounding that with probability at
least 1− δ;

∥∥∥gSW
t (θt?)− gSW

t (θ̂SW
t )

∥∥∥
HSW
t (θ?)−1

≤
√
λt(S + (2σ)−1) + σd√

λt
log
(
4(1 + σ2D/(dλt))/δ)

)

Applying an union bound over TD and using |TD| ≤ T yields the announced result for the sliding-
window confidence set. We now turn our attention to the confidence set based on the discounted
estimator, which requires at little more work. Again, we fix t ∈ τ and denote θt? = θ? = θs? for
every s ∈ [t − D, t]. By first using the characterization of the weighted maximum-likelihood
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estimator we have the following set of inequalities:

∥∥∥gED
t (θt?)− gED

t (θ̂SW
t )

∥∥∥
HED
t (θt?)−1

=
∥∥∥∥∥
t−1∑

s=1
γt−1−s

[
µ(aT

s θ
t
?)− rs+1

]
as + λtθ

t
?

∥∥∥∥∥
HED
t (θt?)−1

=
∥∥∥∥∥
t−1∑

s=1
γt−1−s

[
µ(aT

s θ
t
?)− µ(aT

s θ
s
?)− ηs+1

]
as + λtθ

t
?

∥∥∥∥∥
HED
t (θt?)−1

≤
∥∥∥∥∥
t−1∑

s=1
γt−1−s

[
µ(aT

s θ
t
?)− µ(aT

s θ
s
?)
]
as

∥∥∥∥∥
HED
t (θt?)−1

+

∥∥∥∥∥
t−1∑

s=1
γt−1−sηs+1as

∥∥∥∥∥
HED
t (θt?)−1

+
√
λtS (4.17)

Let us start by bounding the first term; the idea is that since θs? = θt? = θ? for every s ∈ [t−D, t],
only the t − D − 1 first terms of the sum matters and they are all multiplied by a very small
constant (at least γt−D). This justifies a rather crude bound;

∥∥∥∥∥
t−1∑

s=1
γt−1−s

[
µ(aT

s θ
t
?)− µ(aT

s θ
s
?)
]
as

∥∥∥∥∥
HED
t (θt?)−1

=
∥∥∥∥∥
t−1−D∑

s=1
γt−1−s

[
µ(aT

s θ
t
?)− µ(aT

s θ
s
?)
]
as

∥∥∥∥∥
HED
t (θt?)−1

≤
t−1−D∑

s=1
γt−1−s

∣∣∣µ(aT
s θ

t
?)− µ(aT

s θ
s
?)
∣∣∣ ‖as‖HED

t (θt?)−1

≤ 2SL̄µλ−1/2
t

t−D−1∑

s=1
γt−1−s

≤ 2SL̄µλ−1/2
t γD/(1− γ) (4.18)

where in the second to last inequality we use HED
t (θt?) � λtId, ‖as‖ ≤ 1 and µ(aT

s θ
t
?)−µ(aT

s θ
s
?) ≤

2SL̄µ since both θt? and θs? ∈ Θ. We proceed in a similar fashion to bound the second in the
r.h.s of Eq. (4.17). Indeed;

∥∥∥∥∥
t−1∑

s=1
γt−1−sηs+1as

∥∥∥∥∥
HED
t (θt?)−1

≤
∥∥∥∥∥
t−1−D∑

s=1
γt−1−sηs+1as

∥∥∥∥∥
HED
t (θt?)−1

+

∥∥∥∥∥∥

t−1∑

s=t−D
γt−1−sηs+1as

∥∥∥∥∥∥
HED
t (θt?)−1

≤ 2σλ−1/2
t

t−1−D∑

s=1
γt−1−S + γt−1

∥∥∥∥∥∥

t−1∑

s=t−D
γ−sηs+1as

∥∥∥∥∥∥
HED
t (θt?)−1

≤ 2σλ−1/2
t γD/(1− γ) +

∥∥∥∥∥∥

t−1∑

s=t−D
γ−sηs+1as

∥∥∥∥∥∥
γ−2(t−1)HED

t (θt?)−1

(4.19)

The most r.h.s term in the above equation can bounded by applying Theorem 2.4.1. To see this
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recall that γ ∈ (0, 1) and therefore we have the matrix inequality:

γ−2(t−1)HED
t (θt?) = γ−2(t−1)

t−1∑

s=t−D
γt−1−sµ̇(aT

s θ?)asaT
s + λtγ

−2(t−1)Id

� γ−2(t−1)
t−1∑

s=t−D
γ2(t−1−s)µ̇(aT

s θ?)asaT
s + λtγ

−2(t−1)Id (γ ∈ (0, 1))

=
t−1∑

s=t−D
γ−2sµ̇(aT

s θ?)asaT
s + λtγ

−2(t−1)Id

:= H̃ED
t .

where we used our temporary notation θs? = θ? for s ∈ [t−D, t]. Therefore:
∥∥∥∥∥∥

t−1∑

s=t−D
γ−sηs+1as

∥∥∥∥∥∥
γ2(t−1)HED

t (θt?)−1

≤
∥∥∥∥∥∥

t−1∑

s=t−D
γ−sηs+1as

∥∥∥∥∥∥
(H̃ED

t )−1

≤

√
λtγ−2(t−1)

2σγ−(t−1) + 2σγ−(t−1)
√
λtγ−2(t−1)

log
(

2d det(H̃ED
t )1/2

δ(λtγ−2(t−1))d/2

)

≤
√
λt

2σ + σd√
λt

log
(
4(1 + σ2D)/(dλt)/δ

)

with probability at least 1 − δ. This high probability bound is obtained by directly applying
Theorem 2.4.1 after the first inequality with the weights ws = γ−s (all the requirements of the
theorem are met thanks to Eqs. (4.1) and (4.2)). The last inequality is obtained by some straight-
forward (and rather crude) upper-bounding and the application of Lemma B.2. Assembling the
above and Eq. (4.19) yields:
∥∥∥∥∥
t−1∑

s=1
γ−sηs+1as

∥∥∥∥∥
γ2(t−1)HED

t (θt?)−1

≤
√
λt

2σ + σd√
λt

log
(
4(1 + σ2D)/(dλt)/δ

)
+ 2σλ−1/2

t γD/(1− γ).

Combining the above with Eq. (4.18) and Eq. (4.17) yields the announced result. �

Appendix 4.B Proof of Eq. (4.4)
We proved a similar result in the stationary case. The main tool is the self-concordance property
which can easily be leveraged to extend the technical results of Section 1.4.3 in the non-stationary
case. Fix t and assume that θt? ∈ CSW

t . The following set of inequalities hold:
∥∥∥θ̃t − θt?

∥∥∥
HSW
t (θt?)

≤
√

1 + 2S
∥∥∥θ̃t − θt?
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GSW
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1 + 2S
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t (θ̃t)− gSW

t (θt?)
∥∥∥

GSW
t (θt?,θ̃t)−1

≤
√

1 + 2S
(∥∥∥gSW

t (θ̃t)− gSW
t (θ̂SW

t )
∥∥∥

GSW
t (θt?,θ̃t)−1

+
∥∥∥gSW
t (θt?)− gSW

t (θ̂SW
t )

∥∥∥
GSW
t (θt?,θ̃t)−1

)

≤ (1 + 2S)
(∥∥∥gSW

t (θ̃t)− gSW
t (θ̂SW

t )
∥∥∥

HSW
t (θ̃t)−1

+
∥∥∥gSW
t (θt?)− gSW

t (θ̂SW
t )

∥∥∥
HSW
t (θt?)−1

)

2(1 + 2S)νt(δ) ,

where we last used that θ̃t, θt? ∈ CSW
t .
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Appendix 4.C Proof of Eq. (4.6)
The goal is here to obtain the bound:

T∑

t=1
‖at‖2(VSW

t )−1 1(t ∈ TD) ≤ 2dT/Ded log(λT + T ¯̀
µ/d)

The proof simply decomposes TD into at most dT/De stationary blocks and applies the Elliptical
Potential lemma on each such blocks. Formally we construct a partition {T̃ jD}j of TD as follows;
let T̃ 0

D = ∅ and for j ≥ 1 define:

tj0 := min


t ∈ TD \

j−1⋃

k=1
T̃ kD


 and

T̃ jD := [tj0; tj0 +D] ∩ TD ,

until ⋃jk=1 T̃ kD = TD. Clearly {T̃ jD}j is a partition of TD of size at most dT/De. Furthermore for
each j ∈ [1, dT/De] we have:

∑

t∈T̃ jD

‖at‖2(VSW
t )−1 1(t ∈ TD) =

∑

t∈T̃ jD

‖at‖2(VSW
t )−1

≤
tj0+D∑

t=tj0

‖at‖2(VSW
t )−1

≤
tj0+D∑

t=tj0

‖at‖2(VSW
t
j
0:t

)−1

where VSW
tj0:t ≤

∑t
s=tj0

asa
T
s + (λt/¯̀

µ)Id. Applying the Elliptical Potential lemma on this final
quantity along with some simple upper bounding yields:

∑

t∈T̃ jD

‖at‖2(VSW
t )−1 1(t ∈ TD) ≤ 2d log(λT + T ¯̀

µ/d)

Therefore decomposing TD along the partition {T̃ jD}j of size at most dT/De yields the announced
result.

Appendix 4.D Proof of Eq. (4.7)
This result is simply obtained by repeating the proof of Lemma 3.1.2 and resorting to the
partition {T̃ jD}j of TD from Appendix 4.C whenever applying the Elliptical Potential lemma
(note on any block T̃ jD the environment is stationary and θt? for t ∈ T̃ jD is a constant).
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5.1 Summary

Remember that our original goal was to study the effects of non-linearity in a simple yet broad
family of parametric bandits: the Generalized Linear Bandits (GLBs). We now briefly sum up
what we have learned on that topic in the previous chapters.

• We have seen in Chapter 1 that GLBs offer two important advantages over the LB approach;
from a theoretical perspective the study of GLBs stands as a first-step towards understanding
rich rewards signals, by providing a minimalistic yet powerful extension to Linear Bandits. GLBs
are also of important practical relance as they cover a large range of reward distributions (binary,
categorical, ..) frequently encountered in real-life situations. We covered the seminal work of
Filippi et al. (2010) (which encompasses almost all existing work on GLBs when it comes to
the treatment of non-linearity); its great feat is to show that the LB recipes can be successfully
applied to non-linear systems. However their linearization approach shows several downsides; it
leads to regret upper-bounds of the form:

Regretθ?(T ) = Õ
(
κ̄µd
√
T
)
,

where κ̄µ is a problem-dependent constant which embodies the level of non-linearity in the
reward signal. The higher the non-linearity, the larger κ̄µ, which comes with two disappointing
effects; (1) for several highly non-linear models of practical importance (e.g the Logistic Bandit)
this constant his particularly large, which questions the practical relevance of GLBs and (2)
it suggests that non-linearity stands as a fundamental obstacle when dealing with complex
reward structures. We set out to question and hopefully negates this conclusion. This required
improvements that are simultaneously of algorithmic and analytical nature. This requires tighter
confidence sets, sensitive to the level of non-linearity through the varying variance that is imposes

121
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across the reward signal. It also requires developing an enhanced analysis, aware of the local
effects of non-linearity in order to characterize the correct balance between the estimation and
prediction aspect of the regret minimization task.

• In Chapter 2 we focused on the construction of enhanced confidence sets. Guided by an
asymptotical analysis, we leveraged the tools provided by the theory of self-normalized processes
to achieve our goal. This led us to new confidence sets of the form:

{
θ,
∥∥∥θ − θ̂t

∥∥∥
2

Ht(θ)
≤ d log(t/δ)

}
,

which captures the effective level of non-linearity through its variance, efficiently measured by
the matrix Ht(θ). We saw that such confidence sets are much smaller than their predecessors
and are much better fitted to measure distance between parameters in non-linear situations.

• We applied our new confidence sets to the design of improved GLB algorithms in Chapter 3.
Along with an analysis that leverages a smoothness property called self-concordance and allows
a local treatment of the non-linearity, we prove that these algorithms enjoy regret upper-bounds
of the form:

Regretθ?(T ) = Õ
(
d
√
µ̇(aT

? θ?)T + d2κ̄µ

)
.

This bound replaces the multiplicative dependency in κ̄µ by the local sensitivity of the reward
signal around the optimal action, which is typically much smaller. It also defers the effects
of non-linearity to a dominated, second-order term of the regret which is tied to a transitory
exploration phase during which the algorithm searches for highly rewarding arms. It therefore
tells a more nuanced story about the effects of non-linearity: it mostly impacts the early phase
of the interaction, after which the problem simply looks like a linear bandit with slope µ̇(aT

? θ?).
We refined our analysis for the Logistic Bandit by showing that the regret incurred during this
transitory phase is tied to the geometry of the problem, and is small (independent of κ̄µ) for
several configurations. In particular, when the available actions are A = B2(0, 1) we showed
that the regret bound becomes:

Regretθ?(T ) = Õ
(
d
√

exp(−‖θ?‖)T
)
.

This embodies the benefits of our approach as this bound is exponentially smaller than existing
ones for this problem; it also shows that for some highly non-linear problems, the effects of non-
linearity are inexistent and those problems are easier than their linear counterparts. Finally, we
showed that the scaling displayed above is minimax-optimal which suggests that our approach
yields the correct characterization of the non-linearity’s effects.

• In Chapter 4 we extended our findings to piece-wise stationary environments through the
use of forgetting mechanisms. We arrived to the same conclusions as in the stationary case by
proving the following regret upper-bound:

Regretθ?(T ) = Õ

T 2/3Γ1/3

T




√√√√
T∑

t=1
µ̇(aT

?,tθ
t
?)/T + L̄µ


+ T 1/3Γ2/3

T (κ̄µ + L̄2
µ)


 ,

were ΓT counts the number of reward switches across the horizon T . We then considered a more
general non-stationary metric known as the budget-variation BT . We saw that this setting is
much more challenging to address, as even a naive linearization approach fails. We detailed a
first effort towards its theoretical treatment by generalizing the linearization approach, leaving
a fine treatment of non-linearity for future work.
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5.2 Remaining challenges and open questions

We discuss here several directions for future research and remaining open questions.

5.2.1 Simultaneous statistical and computational efficiency

Motivation. We focused in this dissertation on the statistical efficiency of the different GLB
algorithms we covered but did not address their computational efficiency. Over all those algo-
rithms we saw that OFU-GLB-r is the only fully tractable one as it does not rely on non-convex
optimization routine. It however suffers from a high computational load which originates from
both its learning and planning mechanisms. (1) On the learning part, it requires at every round
a batch convex optimization procedure to compute θ̂t (up to sufficient precision). This can be
quite challenging in practice as it brings the per-round computational cost of the learning aspect
of the algorithm to roughly Õ(T ). (2) On the planning part, we saw that OFU-GLB-r required to
solve at each round |A| convex programs to find an optimistic pair (xt, θ̃t); this yields a Õ(|A|T )
additional per-round computational cost, even more burdensome when |A| is large. An excit-
ing direction of research therefore consists in constructing algorithms that enjoy the improved
statistical efficiency of our algorithms but with reduced computational load. This requires to
reduce the costs of both the learning and planning mechanisms.

Challenges. (1) For the learning part the goal is to produce fully on-line (that is with Õ(1)
cost) estimators and confidence sets for θ?. This can for instance be done by using the online
convex optimization (OCO) to confidence set conversion introduced by Abbasi-Yadkori et al.
(2012); this approach was actually already followed in the GLB literature by Zhang et al. (2016);
Jun et al. (2017) but fails to achieve statistical efficiency as the radii of the resulting confidence
sets scale linearly with κ̄µ. Existing lower-bounds for the regret of OCO algorithms on logistic
regression (Hazan et al., 2014) suggests that in all generality this cannot be improved. However
such lower-bounds are derived under some reward misspecification and might therefore evade
the theoretical settings of GLB algorithms; also, recent improvements (Jézéquel et al., 2020) in
the online optimization community relying on improper algorithms might provide us with the
correct tools to reach our goal - although extending this framework to the bandit setting is not
straight-forward. (2) From the planning side the most natural solution calls for generalizing the
frequentist linear Thompson Sampling of Abeille and Lazaric (2017) - it replaces the computation
of an optimistic parameter by sampling, much less costly. The analysis of Abeille and Lazaric
(2017) relies on the ellipsoidal shape of the confidence sets in the LB setting; generalizing it to
arbitrary convex sets seems like the way to go - although easier said than done.

5.2.2 Best-arm identification

This part of the thesis focused on the regret minimization aspects of parametric bandits and left
aside the equally important pure-exploration (or best arm identification) task. There exist an
important literature on pure exploration in linear bandits (Soare et al., 2014; Tao et al., 2018;
Xu et al., 2018; Fiez et al., 2019; Réda et al., 2021). The GLB part remains relatively under-
explored but for the work of Kazerouni and Wein (2021) ; their approach however suffers from
severe detrimental dependencies in the usual culprits - that is, κ̄µ. A remarkable effort to reduce
such dependencies in the Logistic Bandit pure exploration setting was recently conducted by
Jun et al. (2021) who derived a fixed-design version of our concentration inequality which enjoys
a reduced dependency w.r.t the dimension d. Their approach still suffers from dependencies in
κ̄µ; they however show that this is unavoidable in this setting. We believe that an interesting
direction of research lies in characterizing the sample complexity of finding “almost-optimal”
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arms (for instance, sub-optimal by 1/κ̄µ) as we suspect that for the Logistic Bandit this task
might be made easier by the flatness of the reward signal around good arms.

5.2.3 Open question: optimality of forgetting mechanisms

Our treatment of GLBs in drifting environments raises several open questions. The first one
concerns the nature of the difference between the LB and GLB regret upper-bounds. We pos-
tulate that this is an artefact of the proof and that an improved analysis should yield the same
rates. Fixing it should constitued the first step before trying to extend our non-linear analysis
to this challenging setting. The second question is not specific to GLBs, but regards the opti-
mality of forgetting strategies in parametric bandits. Indeed, the only existing lower-bound for
non-stationary parametric bandits was obtained by Cheung et al. (2019b) in the linear case, and
scales as Ω(B1/3

T T 2/3). The observed gap with the upper-bounds obtained by a correct analysis
could potentially be explained by a fundamental sub-optimality of the forgetting principle. We
see several ways of answering this question: (1) by providing an improved analysis of forgetting
strategies in the general case, matching the lower bound or (2) proving lower-bounds for for-
getting policies which establish their sub-optimality. Finally, this raises the question of the true
minimax rates behind the non-stationary parametric bandit problem. Indeed, we are not aware
of existing methods matching the lower-bound of Cheung et al. (2019b)1 in the general case (i.e
without any geometric assumption on the arm set). This might be explained by the nature of this
lower-bound, which is obtained on a very specific problem instance (i.e piece-wise stationary)
and might be too specific to cover harder non-stationary problems.2 We believe that establish-
ing new lower-bounds under generic dynamic scenarios (e.g where the ground truth evolves at
every round) therefore stands as a crucial missing piece in the non-stationary parametric bandit
literature.

1(Chen et al., 2019) do obtain the desired rates, however for a different adversary of the regret. It is not
straight-forward to adapt their guarantees to the more challenging setting discussed here.

2Actually, if the environment is known to be piece-wise stationary, we saw in Section 4.2 that the proof strategy
can be adapted to avoid the difficulties of the drifting analysis.
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Chapter 6

Learning from Logged Bandit
Feedback

The second part of the dissertation focus on the problem of learning from logged bandit feedback,
which arise from considerations that can be considered as orthogonal to the first part. The goal
of this first chapter is to motivate and introduce the learning problem. This is done by examining
the case of recommender systems - a practical setting which highlights some shortcomings of
purely online approaches. We describe the notion of offline policy evaluation, which goal is to
forecast the performances (in terms of expected collected reward) of any strategy based on a
static dataset obtained through the interactions with the environment of a reference strategy.
Reaching this goal enables for offline policy selection: ranking candidate strategies before-hand
and selecting the most promising one for deployment in the environment. It also enables for
offline policy optimization, which reduces the selection problem to an optimization program and
leverages past interactions in a data-driven approach to automatically discover better strategies.
We present and discuss state-of-the-art approaches for policy evaluation and optimization in the
bandit literature, as well as their ties to approaches from reinforcement learning. While an
important part of the literature focuses on providing point estimate for policy evaluation, we
argue for the high practical need for confidence intervals for this task. This leads us to present
the counterfactual risk minimization principle of Swaminathan and Joachims (2015a), a risk-
averse approach based on empirical Bernstein confidence bounds for policy evaluation. Albeit
displaying enjoyable theoretical garantees, it suffers from several drawbacks which limits its use
in practical settings. We discuss such limitations, with the goal of circumventing them in the
next chapter.
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6.1 Motivation and formalization

6.1.1 The ad-placement case

Contextual decision-making in the real world. Before giving a formal definition of the
learning problem, we will motivate it by discussing a real-life instance of contextual decision-
making, arising from recommender systems. In particular, we will consider the ad-placement
task. The setting is the following: at a certain point in time, a given user arrives on a publisher
website, which sells blank or available sections of its page for ad hosting. Information about the
user (e.g recent browsing history) is communicated to a seller - a third party which is trying
to advertise for its products. If interested in targeting that user, the seller can pay a small
fee to the publisher and acquire some space on the publisher’s webpage. The seller must then
select a product to suggest to the user; the more relevant this recommendation, the higher the
chances for the user to purchase the product and for the seller to make a profit. This game
repeats over time with different users with different preferences, that the seller must learn to
adapt its recommendation (this makes it a contextual decision-making problem) to increases its
revenue. We discussed in Chapter 1 some fundamental challenges behind this problem (e.g the
exploration/exploitation dilemma) and principled approaches to address them. Unfortunately,
they may be disqualified by constraints that decision-makers face in real-life situations, such as
the ad-placement problem. For instance, we saw the importance of exploration for minimizing
long-term metrics such as the regret. It turns out that in practice, some short-term metrics
are more important. In the ad-placement problem, exploration involves recommending products
that, given current estimates, are not likely to lead to a purchase. In such cases, the seller suffers
a net loss corresponding to the fee payed to the publisher to buy the ad space. Therefore, too
much exploration can in the short-term lead to a loss of revenue, potentially prohibitive (the
seller could go bankrupt before seeing the positive effects of exploration).

Risk-aversion and warm-starts. To avoid such outcomes, decision-makers in the real-life
tend to be rather risk-averse; unfortunately, this goes against mechanisms such as optimism,
which are risk-seeking approaches. The cost of exploration is particularly high in the beginning
of the experiment, during which the seller must try out most of its catalogue to learn a decent
user to product mapping. Fortunately for the seller, it does no truly face a cold-start setting
as most often a great deal of information is available before any interactions. For instance, the
seller might have access to what is often referred to as organic data: a collection of products
seen by users when browsing directly on the seller’s platform. Leverage this data to learn which
product might interest which user already provides a decent strategy for recommendation, which
will generate more revenue than an exploratory risk-seeking alternative in the short-term.

Learning from logged bandit feedback. If a strategy that is based on extraneous data
provides a good starting point, it surely is sub-optimal and we expect it to be improvable
through data-driven approach. Note that by adding a small, and more importantly controllable
amount of exploration (through an ε-greedy mechanism) allows (at least conceptually) for the
long-term discovery of better strategies while working on a short-term revenue constraint. For
our ad-placement example, one single day of deployment usually generates tens of thousands
of opportunities for the seller to advertise its products. That is so many bandit interactions
(e.g context, actions and reward triples) that can easily be logged at little cost. Before directly
deducing from the logged data an improved strategy, an intermediary step is to leverage this
data to forecast the performance (in terms of expected revenue) of other policies. In other words,
infer the performance of any system from the logs, as if it was taking the actions by itself. This
task, referred to as offline policy evaluation requires the design of counterfactual estimators to
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abstract out the bias towards actions favored by the logging strategy. Even more important
than the design of such estimators is the construction of confidence intervals for offline policy
evaluation, so that in a defensive move the risk-averse decision-maker can judge strategies based
on their probable worst-case performance. The action of selecting policies for future deployment
based on the logged data through counterfactual estimators is often referred to offline policy
evaluation.

6.1.2 The learning problem

We will formally introduce counterfactual estimators and associated confidence intervals in Sec-
tion 6.2. Before, we remind and introduce some useful notations and formalize the learning
objective. In the following, we will use x to denote a context and a ∈ [K] an action, where
K denotes the number of fixed available actions. In this part of the dissertation, we will work
under a standard distributional assumption on the context.

Assumption 6.1.1 (Context distribution). The contexts are drawn i.i.d according to a distri-
bution ν, whose support X is a compact subset of Rp for some p ∈ N.

Remark 6.1.1 (About the context distribution assumption). Assumption 6.1.1 is stronger than
assuming that an oblivious adversary is picking the contexts, as we did in the first part of the
dissertation. It is nonetheless quite a logical assumption to make in real-world situations; for
the ad-placement example, users typically arrive independently of each other. If needed, this
assumption could be lessened to fast-mixing distributions which will imply that the empirical
distribution along a sequence of context is close to i.i.d - see Duchi et al. (2016).

The strategy followed by a decision-maker is formalized by a policy π : X → ∆K - i.e a mapping
from context to distributions over actions which quantifies how likely the decision-maker is to
select an action when presented with a context. We will slightly overload this notation and
denote π(x, a) = [π(x)]a the probability of selecting action a when the context is x. Given
a context x, each action is associated with a reward r(x, a) (with the convention that better
actions have higher rewards) and where the reward function r(·) is unknown. We make the
following assumption on the reward function.

Assumption 6.1.2 (Bounded reward). The reward function is bounded, and such that:

r(x, a) ∈ [0, 1] ∀x ∈ X , ∀a ∈ A .

This technical assumption is made for ease of exposition. It can be explicitly enforced by
re-scaling the reward function. The goal of the decision-maker is to find a policy of high perfor-
mance; here, we measure performance in terms of expected reward or value. This is quantified
by the value function:

Value(π) := Ex∼ν Ea∼π(x) [r(x, a)] .

Equivalently, one can introduce the cost function c(x, a) = −r(x, a) and the risk function:

Risk(π) := Ex∼ν Ea∼π(x) [c(x, a)] .

with the convention that the lower the risk, the better the policy. Naturally, minimizing the risk
function is equivalent to maximizing the value function. To stay coherent with existing work in
the bandit literature, we will now refer to the risk (rather than the value) as the performance
measure for the rest of this chapter. As we discussed in the previous section, it is not reasonable
in practical scenarios to expect having the luxury of testing out several policies in order to
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estimate and compare their empirical risk, to retain whichever policy has the smallest. Instead,
we wish to leverage logged data, obtained by deploying a logging policy that we denote π0. More
precisely, we assume the access of a static dataset Dn of length n, defined as follows:

Dn :=
{
xi ∼ ν, ai ∼ π0(xi), ci := c(xi, ai), p0

i := π0(xi, ai)
}
i∈[n]

.

Given a policy π, offline policy evaluation (OPE) consists in building an estimator for the risk
R(π) based only on Dn; informally laid-out:

construct R̂n(π) = f(Dn, π) proxy Risk(π) . (OPE)

for some real-valued function f . Offline policy optimization (OPO) consists in using such esti-
mator to search for a policy of lowest risk; again for informal exposition, with penalty(·) being
a user-defined regularization function:

compute π̂n ∈ arg min R̂n(π) + penalty(π) proxy
π? ∈ arg min

π
Risk(π) , (OPO)

henceforth reducing policy learning to an optimization problem.

6.2 Counterfactual estimation
We introduce and discuss here counterfactual estimators as well as counterfactual confidence
intervals for offline policy evaluation.

6.2.1 Counterfactual estimators

Direct methods. One approach to build estimators for R(π) from Dn is to leverage the
static dataset to learn a model ĉn(x, a) of the cost function c(·) and estimate the risk from the
approximated cost instead of the true cost; this is most often referred to as direct methods (DM)
with estimators of the form:

R̂DM
n (π) := 1

n

n∑

i=1

∑

a∈[K]
ĉn(xi, a)π(xi, a) . (6.1)

Such estimators are unfortunately biased without a perfect model for the cost function, which
is typically unavailable (and most often even unattainable) for real-world situations. In what
follows, we discuss propensity re-weighting to obtain unbiased estimators without a perfect
model of the cost function.

Inverse Propensity Scoring. One way to obtain an unbiased estimator ofR(π) based only on
Dn is to leverage a mechanism called inverse propensity scoring (IPS) (Horvitz and Thompson,
1952; Rosenbaum and Rubin, 1983). The principal idea to remove the preference bias of π0 from
Dn by re-weighting samples based on the discrepancy between π0 and π. Formally, introduce
the propensity weights ωπ(x, a) := π(x,a)

π0(x,a) and the IPS risk estimator

R̂IPS
n (π) = 1

n

n∑

i=1
ωπ(xi, ai)c(xi, ai) , (6.2)

first considered by Bottou et al. (2013) for counterfactual estimation. Under the technical
requirement for π to be absolutely continuous w.r.t π0 (denoted π � π0) so that propensity
weights are well-defined, it is straight-forward to show that the IPS estimator is unbiased:

E
[
R̂IPS
n (π)

]
= R(π) ,
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This is a crucial advantage over direct methods. However, the IPS estimator suffers from a
large (even potentially infinite) variance. Such behavior is highly related to the values of the
propensity weights. Indeed through elementary computations one can show that:

Var
(
R̂IPS
n (π)

)
≥
(
Ex∼νEa∼π(x)

[
ωπ(x, a)c(x, a)2

]
− 1

)
/n .

In other words, the variance of the IPS estimator grow linearly with the importance weights ωπ
- which can be unbounded! In particular, the importance weight ωπ(x, a) is very large when
given x the policy π assigns a high probability to action a, whereas it was very unlikely to be
played by π0. This examples highlight that the variance of R̂IPS

n (π) is highly dependent on π
(and its discrepancy w.r.t π0) and can be extremely large.

Variance reduction. An important strand of research have focused on reducing the variance
of the vanilla IPS estimator. Perhaps the simplest way to do so is to explicitly trade bias for
variance, for instance by clipping1 the propensity weights (Ionides, 2008);

ωπ(x, a) = min
(
M,

π(x, a)
π0(x, a)

)
, (6.3)

where M > 0. While this necessarily introduce bias, it forces the variance to be bounded.
A more sophisticated approach involves the use of control variates to reduce the variance. A
good candidate for an additive control variate is the estimation given by a direct method - cf.
Eq. (6.1). This idea lead to so-called doubly robust (DR) risk estimators introduced by Dudík
et al. (2014):

R̂DR
n := 1

n

∑

i∈[n]

∑

a∈[K]
ĉ(xi, a)π(xi, a) + 1

n

∑

i∈n
ωπ(xi, ai)

[
c(xi, ai)− ĉ(xi, ai)

]
. (6.4)

Such an estimator is unbiased and typically has lower variance than the original IPS. It however
comes with some additional methodological burdens, typically to select a model for the reward
estimator ĉ(·) which will involve splitting Dn for the train/validation/test procedure. The idea
behind the DR estimator, presented here in its bluntest form for the sake of clarity has driven an
important stream of research for offline policy evaluation, mostly focusing on deriving improved
additive control variates - see for instance (Wang et al., 2017; Farajtabar et al., 2018; Vlassis
et al., 2019). While the DR approach relies on additive control variates, other development have
involved multiplicative control variates for the IPS (Hesterberg, 1995) leading to self-normalized
IPS (SNIPS) risk estimators by Swaminathan and Joachims (2015b):

R̂SNIPS
n := 1

n

n∑

i=1
ω̃π(xi, ai)c(xi, ai) where ω̃π(x, a) = ωπ(x, a)∑n

j=1 ω
π(xj , aj)

. (6.5)

This estimator is unfortunately biased (however with bias disappearing asymptotically), but has
been shown to have smaller variance than the IPS. It can be easily combined with the doubly
robust approach for greater variance reduction, by replacing the propensity weights ωπ with
their renormalized counterparts ω̃π in Eq. (6.4).

Remark 6.2.1 (Related work from Reinforcement Learning). We described counterfactual es-
timators for the contextual bandit setting. There exists a substantial literature on off-line policy
evaluation in the Reinforcement Learning setting, for which the IPS approach received important
attention (Jiang and Li, 2016; Thomas and Brunskill, 2016; Xie et al., 2019). It however suf-
fers from even greater variance (Mandel et al., 2014) in this setting - especially for long-horizon
problems.

1In practice, weight-clipping or equivalent approaches are most often used for the numerical stability it provides.
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6.2.2 Confidence intervals

Motivation. We mentioned that the variance of the naive IPS estimator can be large, and
depends on which policy is being evaluated. This is quite unfortunate for the risk-averse decision-
maker, as for a particular realization of the dataset Dn the actual performance of a policy can
be way worse than what was predicted by the IPS estimator. This stresses the paramount im-
portance of obtaining confidence intervals for offline policy evaluation. For instance, it allows to
consider what could be the worst-case outcome when deploying a new policy. It therefore allows
for defensive positions when selecting future policies - e.g select the policy with smallest confi-
dent upper-bound on the true risk. Note that this reasoning also applies to other estimators (e.g
doubly robust and self-normalized approaches); even if their variance is smaller, it unavoidably
depends on the level of discrepancy between the policy π being evaluated and the logging policy
π0. A substantial proportion of the existing literature on confident policy evaluation focuses on
the IPS estimator to build confidence intervals for the true risk, as it is unbiased and writes as
a sum of i.i.d random variables (unlike, for instance, the SNIPS estimator).

An asymptotic confidence interval. Bottou et al. (2013) proposed relying on the central
limit theorem (cf. Theorem A.1 and Lemma A.1) applied to the IPS estimator to derive approx-
imate confidence intervals. Using for short-hand σ2(π) = Var(ωπ(x, a)) and Φ the cumulative
distribution function of the standard Gaussian random variable, this states that for a fixed policy
π and a confidence level δ ∈ (0, 1]:

I CLT
n (π) := [R̂IPS

n (π) + σ(π)√
n

Φ−1(δ/2), R̂IPS
n (π)− σ(π)√

n
Φ−1(δ/2)] ,

is an asymptotic (1 − δ)-confidence interval for R(π); i.e limn→∞ P (R(π) ∈ ICLT
n (π)) ≥ 1 − δ.

This approximated confidence interval has a particularly enjoyable feature for the problem at
hand as it captures the policy-dependent variance of the estimators. We can therefore expect
the confidence intervals for policies close to π0 to be thin (small variance) and large for policies
far from π0 (large variance). The variance σ2(π) is of course unknown but can be replaced by
its empirical counterpart without impacting the validity of the asymptotic confidence interval -
see Lemma A.2.

Finite-time confidence intervals. It is natural to investigate how several concentration
inequalities can be used to design finite-time confidence intervals for the risk, such as Chernoff-
Hoeffding’s concentration inequality. Let π be fixed and bπ be an upper-bound on the counter-
factual weights ωπ. Then by applying the Chernoff-Hoeffding’s tail-inequality (cf. Lemma A.4)
we obtain that for a confidence level δ ∈ (0, 1]:

ICH
n (π) := [R̂IPS

n (π)− bπ

√
log(2/δ)

2n , R̂IPS
n (π) + bπ

√
log(2/δ)

2n ] , (6.6)

is a (1 − δ)-confidence interval for the risk; i.e P(Risk(π) ∈ ICH
n (π)) ≥ 1 − δ. Note that the

width of ICH
n (π) shows a direct dependency with bπ, which in all generality can be prohibitively

large. Computing a tight upper-bound for the counterfactual weights requires domain-specific
knowledge. In general, we can only settle for a crude upper-bound that holds uniformly for all
policies, if π0 was forced to have fat tails. For instance, if π0(x, a) ≥ ε for some small known
ε > 0 we obtain bπ = 1/ε for all π. While Chernoff-Hoeffding’s bound only relies on the sample
mean, the empirical Bernstein’s inequality Maurer and Pontil (2009) also leverages the sample
variance. If we denote:

s2
n(π) := 1

n(n− 1)
∑

1≤i<j≤n

(
ωπ(xi, ai)c(xi, ai)− ωπ(xj , aj)c(xj , aj)

)2
, (6.7)
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the empirical variance of the IPS estimator then the empirical Bernstein’s inequality (cf. (Maurer
and Pontil, 2009, Theorem 3) or Lemma A.6) yields another confidence interval for the risk:

IEB
n (π) :=

[
R̂IPS
n (π)±

( 7bπ
3(n− 1) log(4/δ) +

√
2 log(4/δ)

n
s2
n(π)

)]
, (6.8)

with coverage at least 1 − δ. Notice the smaller effect of bπ which now comes with a quickly
vanishing term with rate 1/n instead of 1/

√
n with Chernoff-Hoeffding’s bound. The dominant

term, scaling as 1/
√
n involves the empirical variance s2

n(π) of the weights. As we discussed
earlier with the central limit theorem confidence interval, this effectively measures the uncer-
tainty of the IPS estimator, which we expect to be accurate for policies being close to π0 (small
variance) and unreliable for policy which are far (high variance). In this context, this difference
between the behaviors of ICH

n (π) and IEB
n (π) is quite important, as we will illustrate in Fig. 6.1

under the lens of the offline policy optimization task. It is worth mentioning that the depen-
dency in b can be reduced further. (Thomas et al., 2015) proved a concentration inequality,
similar to the empirical Bernstein but which doesn’t depend directly on bπ but rather on the
observed values of the counterfactual weights.

Other related work. We will focus in this dissertation in IPS-based confidence intervals,
such as the ones we presented above. It is however worth mentioning that recently Kuzborskij
et al. (2020) investigated the design of confidence intervals based on the SNIPS estimator. This
is a technically more challenging task, namely because this estimator cannot be written as a
sum of i.i.d random variables after re-normalization. They derive non-asymptotic confidence
intervals based on the SNIPS estimator, namely by controlling its bias via Harris’ inequality
and proving finite-time concentration inequalities through a semi-empirical Efron-Stein tail-
inequality. Another stream of related work (Dai et al., 2020; Karampatziakis et al., 2020) departs
from classical confidence intervals which quantify the deviation of sample-average estimators
from their mean but leverages ideas from the empirical likelihood approach (Owen, 2001). These
works are concurrent and closely related to the results we will present in Chapter 7; we defer a
dedicated discussion to Chapter 8.

6.3 The Counterfactual Risk Minimization principle

In this section we describe the counterfactual risk minimization (CRM) principle of Swaminathan
and Joachims (2015a), a conservative offline policy optimization approach that leverages the IPS
estimator and is inspired from the empirical Bernstein confidence interval from Eq. (6.8).
As previously discussed, ranking policies based only on the IPS risk estimator is rather risky.

It is preferable for a risk-averse decision maker to rank them according to a upper confidence
bound on the true risk, for instance by combining the IPS estimator with a confidence interval.
The same principle holds for offline policy optimization, where one wishes to learn a new policy
directly from Dn. Bluntly returning π̂ ∈ arg minπ R̂n(π) is perilous as for a bad realization of the
dataset Dn, the estimator R̂n(π̂n) might have a large variance and be a very poor proxy for the
true risk Risk(π̂n). Instead, is is safer to leverage confidence intervals to construct a confident
upper-bound R̄n on the true risk. Assuming b is a known uniform bound on the counterfactual
weights, the upper-bound given by the Chernoff-Hoeffding’s confidence interval (Eq. (6.6)) will
write:

R̄CH
n (π) := R̂IPS

n (π) + b

√
log(2/δ)

2n
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Risk(π)
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Risk(π)
R̂IPS
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Figure 6.1: Conservative policy optimization based on Chernoff-Hoeffding (CH, left) and empir-
ical Bernstein (EB, right) upper-confidence bound on the risk (smaller is better). The goal is to
find a policy of small risk, approaching the optimal policy π?. Without domain-specific knowl-
edge to upper-bound the counterfactual weights in a policy-dependent way, the upper-bound by
CH is uniform over all policies. The selected policy π̂n minimizing this upper-bound is also the
minimizer of the IPS estimator, which here under-estimates the true risk of π̂n. The situation is
different for EB, as it penalizes policies which are far from π0 and for which the IPS estimator
is subject to high-variance. This allows for a conservative choice, and here a better choice of π̂n.

and is so that for every π, Risk(π) ≤ R̄CH
n (π) with high probability. This is unfortunately not

enough; the resulting IPS regularization is policy independent, and therefore arg minπ R̄CH
n (π) =

arg minπ R̂n(π). A positive alternative is brought by the empirical Bernstein confidence interval
(Eq. (6.8)), for which the confident upper-bound writes:

R̄EB
n (π) := R̂IPS

n (π) +

√
2 log(4/δ)

n
s2
n(π) + 7b

3(n− 1) log(4/δ) .

Note that the regularizer now depends on π through the empirical variance s2
n(π). This effectively

penalizes policies whose estimator have high variance and might be unreliable. The advantage
for offline policy optimization of this upper-bound over the one inherited from the Chernoff-
Hoeffding’s concentration inequality is illustrated in Fig. 6.1, and is the leading idea behind the
CRM principle.

6.3.1 A variance-regularized objective

Motivated by the variance-sensitive nature of the first term of the empirical Bernstein confi-
dent upper-bound, the counterfactual risk minimization principle of Swaminathan and Joachims
(2015a) prescribes building a penalty term using the empirical variance as a data-dependent reg-
ularizer. We now give a formal definition of this learning principle.

Definition (Counterfactual Risk Minimization (Swaminathan and Joachims, 2015a)). When
learning with logged bandit feedback, the counterfactual risk minimization learning principle re-
turns the following policy:

π̂n ∈ arg min
π

{
R̂IPS
n (π) + λ

√
s2
n(π)
n

}
, (CRM)
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where λ is hyper-parameter set by the user and s2
n(π) is the empirical variance of the policy π

as defined in Eq. (6.7).

Note the disappearance of the second-order term of R̄EB
n (π), which is independent of the policy

and therefore doesn’t impact the minimizer.

Remark 6.3.1 (Uniform validity of the confidence bound). The empirical Bernstein upper-
bound as we have stated it so far asserts that for any fixed policy π:

P


Risk(π) ≤ R̂IPS

n +

√
2 log(4/δ)

n
s2
n(π) + 7b

3(n− 1) log(4/δ)


 ≥ 1− δ .

Such a point-wise statement is not enough for the reasoning (eg. minimize a confident upper-
bound on the risk) to make sense. Instead the upper-bound should hold uniformly over all con-
sidered policies. In particular, it should hold at π̂n which is a random quantity that depends
on Dn. Swaminathan and Joachims (2015a) showed that this can be ensured by defining the
right notion of capacity for a class of stochastic policies, and applying an union bound. For a
given policy class Π, let N∞(ε,Π, n) its ε-covering number (see (Anthony and Bartlett, 2009;
Maurer and Pontil, 2009) and references therein for a formal definition). Defining Q∞(Π, δ) :=
log(N∞(1/n,Π, 2n)), this leads to the following statement:

P


∀π ∈ Π, Risk(π) ≤ R̂IPS

n (π) + C

√
Q∞(Π, δ)

n
s2
n(π) + CQ∞(Π, δ)

(n− 1)


 ≥ 1− δ ,

where C is a universal constant. Swaminathan and Joachims (2015a) therefore obtain a uniform
confident upper-bound, which justifies the intuitive motivation for the CRM principle. Indeed,
while the capacity Q∞(Π, δ) of the class is hard to compute, it can in practice be absorbed into
the hyper-parameter λ.

Offline optimization of parametric policies. When dealing with large context and action
spaces, directly optimizing the policy (which can be seen as a |X |×|A| matrix) is unfeasible (the
context space X can very well be infinite). Instead, it is natural to search for a good policy in a
space of parametric policies. - eg. policies parametrized by neural networks. Swaminathan and
Joachims (2015a) applied the CRM principle to exponentially parametrized policies; formally,
let Θ be a compact subset of Rd and consider the following policy class:

Πexp
θ :=

{
πθ(x, ·) = ηθ exp(θTφ(x, ·)), θ ∈ Θ

}
(6.9)

where φ : X ×A → Rd is a given joint feature-map and ηθ is a normalization constant ensuring
that πθ(x) is a valid probability distribution over A. This gives rise to the POEM algorithm
(Policy Optimizer for Exponential Model (Swaminathan and Joachims, 2015a)) which minimizes
the following objective:

θ̂n ∈ arg min
Θ

{
R̂IPS
n (πθ) + λ

√
s2
n(πθ)
n

}
, (POEM)

which can be solved, for instance, by projected plain gradient descent. For numerical stability,
the counterfactuals weights are clipped by a constantM (Eq. (6.3)) also defined by the user. Al-
gorithm 8 provides the pseudo-code fo such an approach. (Swaminathan and Joachims, 2015a)
suggests tuning the pair of hyper-parameters (λ,M) by cross-validation. For instance, by split-
ting Dn into two parts Dtrain

n and Dvalid
n , applying the CRM principle on Dtrain

n and select the best-
values for M and λ according to the naive IPS estimator based on Dvalid

n . This approach stands
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Algorithm 8 POEM (Swaminathan and Joachims, 2015a) with projected gradient descent
input: Parameter space Θ, regularization coefficient λ, clipping constantM , optimization hori-

zon T , learning rate α, initial parameter θ1, static bandit dataset Dn = {xi, ai, ci, p0
i }ni=1.

for t ∈ [1, T − 1] do
Compute likelihood scores:

{
pi(θt)← exp(θT

t φ(xi, ai))/
∑
a∈[K] exp(θT

t φ(xi, ai))
}n
i=1 .

Compute clipped propensity weights:
{
ωi(θt)← max(M,pi(θt)/p0

i )
}n
i=1 .

Compute the empirical mean: R̂n(θt) = 1
n

∑n
i=1 ωi(θt)ci .

Compute the empirical variance: s2
n(θt)← 1

n−1
∑n
i=1(ωi(θt)ci − R̂n(θt))2 .

Perform a gradient descent step:

θ̃t+1 ← θt − α∇θt


R̂n(θ) + λ

√
s2
n(θ)
n


 .

Project back to Θ: θt+1 ← arg minθ∈Θ‖θ − θ̃t+1‖2.
end for
return policy πθT .

as state-of-the-art for offline policy optimization, and (Swaminathan and Joachims, 2015a) re-
ported that empirically, the policies returned by the CRM principle have much lower risk than
those obtained by bluntly minimizing the IPS objective.

Beyond the IPS estimator. This good empirical results of the CRM principle also hold
for other estimator than the IPS - even though the empirical Bernstein bound does not apply
for such estimators. For instance, Swaminathan and Joachims (2015b) reported that empirical
variance penalization also improved the offline policy optimization when it relies on the SNIPS
estimator (Eq. (6.5)) - although this estimator typically has smaller variance than the IPS. This
hints that even if the variance of a risk estimator is reasonable, its policy-dependent nature
speaks in favor of empirical variance regularization to discover better policies.

6.3.2 Limitations

The CRM principle however suffers from two important limitations, inherited from the empirical-
variance regularizer.

Non-convexity. Contrary to the IPS objective which is linear (and therefore convex) in π,
the CRM objective adds a square-root variance penalization;

sn(π) =

√√√√√ 1
n− 1

n∑

i=1


ωπ(xi, ai)c(xi, ai)−

1
n

n∑

j=1
ωπ(xj , aj)c(xj , aj)




2

, (6.10)

which breaks this convexity. This results in ill-posed optimization programs, for which classical
optimization techniques might fail. In practice, this may potentially hinder the statistical ben-
efits brought by the regularizer, since a good minimizer of the CRM objective can therefore be
challenging to discover. We illustrate the non-convexity of the empirical variance term on a toy
example in Fig. 6.2. Providing an alternative statistical principle for offline policy optimization
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Figure 6.2: An illustration of the non-convex nature of the empirical variance on a toy example.
The quantity to estimate is `(θ) = Ex[`(θ, x)] where `(θ, x) = |θ−x| and x is sampled according
to a mixture of Gaussian. We draw n = 100 samples {xi}i∈[n] and plot the resulting sample-
mean estimator ˆ̀

n(θ) and empirical variance s2
n(θ). While both `(θ) and ˆ̀

n(θ) are convex in θ,
the empirical variance s2

n(θ) is a non-convex function of θ.

which would translate into a convex objective is therefore highly desirable for practical applica-
tions. Indeed, standard optimizers could then be deployed safely to optimize this objective, and
provably discover good minimizers with arbitrary precision.

Remark 6.3.2 (Parametrized policies). One could argue that even though the IPS estimator is
convex w.r.t π, it might become non-convex once the policy is parametrized and the optimized
variable becomes the parameter θ - e.g for exponentially parametrized class of policies Πexp

θ .
For this reason, trying to find convex alternatives for the empirical variance could be a vain
attempt to obtain well-posed optimization for parametric problems. In Chapter 7 we will provide
empirical evidence that even for parametrized policies the empirical variance is the main source of
optimization challenges, and that convex alternatives give rise to better optimization behaviors.

Scalability. Another important limitation of the CRM principle is its scalability to large
logged datasets Dn. Computing the gradient of the CRM objective requires going through the
entire dataset and therefore has a computation cost and memory cost O(n). In practice, n is
extremely large and such a cost is prohibitively large - consider for instance our recommender
system example, where at least tens of thousands of interactions can be logged everyday. This
issue is common in many machine learning problems and is usually solved by resorting to stochas-
tic optimization algorithm, which requires only access to unbiased stochastic gradients of the
objective. Those are particularly easy to obtain when the objective is composite (i.e it writes
as a finite sum over the dataset’s entries) as sub-sampling the dataset is enough to obtain an
unbiased gradient. Unfortunately, this is not the case for the CRM objective - again because
of the empirical variance term which does not writes as a sum - cf. Eq. (6.10). It is therefore
not well-suited for stochastic optimization, as obtaining unbiased stochastic gradients of their
related objectives is not straightforward. Swaminathan and Joachims (2015a) proposed a re-
laxation of the CRM objective amenable to stochastic gradients, however only applicable in the
case of exponential policies. Their approach consists in a majorization-minimization strategy,
which still requires going through the whole logged dataset once in a while.
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Hyper-parameter selection. Finally, the CRM principle comes with two hyper-parameters:
the clipping threshold M and the regularization amplitude λ. While good values of M can be
deduced from the empirical repartitions of the weights, the constant λ requires careful tuning as
its choice drastically impacts the performance of the obtained policy. For good performance, λ
should be cross-validated over a relatively fine grid, which adds to the computational complexity
of the algorithm.

These shortcomings of the CRM principle limits its applicability in real-life situations. We will
present in Chapter 7 an alternative formulation through distributionally robust optimization,
which circumvents or at least mitigates such limitations altogether, without sacrifying statistical
guarantees or empirical performances.



Chapter 7

Distributionally Robust Policy
Evaluation and Optimization

In this chapter we present an alternative formulation to the CRM principle by resorting to
the distributionally robust optimization (DRO) framework, a generalization of the empirical
likelihood (EL) approach. We begin by a brief presentation of generalized empirical likelihoods
approaches and remind some important asymptotic properties. In particular, it provides an
alternative way to compute variance-sensitive confident upper-bounds over unknown quantities.
We apply this principle to the problem of offline policy evaluation and optimization. For policy
evaluation, we show empirically that the resulting (asymptotic) confidence intervals are tighter
than the baseline methods, while still providing sufficient coverage. We also show that when
applied to policy optimization, the DRO principle leads to convex objectives (w.r.t the policy)
that are amenable to stochastic optimization, henceforth circumventing the limitations of the
CRM objective. We discuss efficient implementations of the resulting algorithms, and their
(approximate) automatic calibrations by resorting to asymptotic arguments. Finally, we display
promising numerical experiments, validating the benefits of this alternative to the original CRM
objective.
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7.1 Distributionally Robust Optimization
In this section we temporarily abandon our notations and discussions from the previous chapter
in order to provide a brief introduction to the DRO framework. This is a vast topic which has
generated a wide stream of research; covering it exhaustively is out of the scope of the section
and we therefore focus on a few principles that we will apply to the offline policy evaluation
and optimization tasks. We refer the interested reader to (Rahimian and Mehrotra, 2019) for a
detailed survey on DRO.
Throughout this entire section, we consider z a real-valued random-variable following a distri-

bution P? and such that ζ = EP? [z]. Further, we let (z1, . . . , zn) be n independent realizations
of z and denote P̂n their empirical distribution - i.e such that ζ̂n = 1

n

∑n
î=1 zi can be rewritten

as ζ̂n = EP̂n [z].

7.1.1 High-level presentation

Empirical distribution and ambiguity sets. Being a sum of i.i.d the sample-average esti-
mator ζ̂n fits the usual requirements for the development of “classical” confidence intervals, such
as the ones we discussed in the last chapter. One can follow a different rationale and instead
try to construct uncertainty sets directly over the data generating process, centered around the
empirical distribution P̂n. While P̂n might provide only an incomplete description of P? in the
finite sample regime, we can expect it to converge (in some sense) to P?. In particular, for a
large enough number of samples we can expect both distribution to be close; if we can quantify
how close, then we can design a confidence region for P?. Therefore, by treating the empirical
distribution with skepticism, we can consider a whole set of plausible distributions, which may
contain P?. Informally, let d(·‖·) be a measure of distance between probability distributions and
define the ambiguity set at level ε > 0:

Uε(P̂n) :=
{
P s.t d(P‖P̂n) ≤ ε

}
.

Through these ambiguity sets we can design a new family of estimators for ζ, by replacing P̂n
by another plausible distribution P ∈ Uε(P̂n). In particular, we can consider extremal plausible
distributions to obtain optimistic or pessimistic estimators for ζ. This will lead to the definition
of so-called generalized empirical likelihood confidence regions for ζ.

Robustifying uncertain optimization problem. This general idea can be used to robustify
any optimization problem which involves randomness. Indeed, consider the population objective:
minimize θ∈Θ EP? [`(θ, z)] where ` : Θ×R → R. Its sample-average version can be robustified
using ambiguity sets. This is the main intuition behind the DRO principle, which advocates for
solving instead:

minimize
θ∈Θ

max
P∈Uε(P̂n)

EP [`(θ, z)] . (DRO)

The main motivation for this objective is to ensure the robustness of the returned solution with
respect to the randomness in the empirical distribution. In particular, as soon as P? ∈ Uε(P̂n)
then the robust estimator provides a performance-certificate for the true performance. Indeed,
in this case the robust objective provides an upper-bound on the true performance;

P? ∈ Uε(P̂n) =⇒ max
P∈Uε(P̂n)

EP [`(θ, z)] ≥ EP? [`(θ, z))] .

Therefore, the main goal behind the design of the uncertainty sets Uε(P̂n) is to ensure that
it contains P? (with high probability) while still being tight enough to provide a meaningful
performance-certificate.
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Divergence ϕ(t)ϕ(t)ϕ(t) dϕ(Q‖P )dϕ(Q‖P )dϕ(Q‖P ) ϕ?(s)ϕ?(s)ϕ?(s)

Kullback-Leibler ϕ1(t) = t log t− t+ 1 ∑n
i=1 qi log(qi/pi) es − 1

Chi-Square ϕ2(t) = (t− 1)2 ∑n
i=1

(qi−pi)2

pi

{
s+ s2/4 s ≥ −2
− 1 s ≤ −2

Burg entropy ϕ3(t) = − log t+ t− 1 ∑n
i=1 pi log(pi/qi) − log(1− s), s < 1

Hellinger distance ϕ4(t) = (
√
t− 1)2 ∑n

i=1
(√
pi −√qi

)2 s
1−s , s ≤ 1

Table 7.1: Some coherent ϕ-divergences and their characterizations. In this table we assume
that Q and P are distributions on the n-dimensional simplex ∆n and can therefore be associated
with vectors q, p ∈ [0, 1]n, respectively. The notation ϕ? refers to the convex conjugate of ϕ.

ϕ-divergence ambiguity sets. The design of the uncertainty sets is imposed by the discrep-
ancy function d(·‖·) used to measure distances between probability distributions. An important
part of the DRO literature has focused on Wasserstein distances for generating ambiguity sets
- see (Kuhn et al., 2019) for a recent survey. In this work we will focus on another family of
ambiguity sets, generated by ϕ-divergences. This choice is motivated by the desirable theoretical
guarantees of such sets, which will be detailed in the following section. We remind below the
definition of ϕ-divergences.

Definition 7.1.1 (ϕ-divergence). Let ϕ be a real-valued, convex function such that ϕ(1) = 0.
Let P and Q be two probability distributions over a space Ω. The divergence of Q with respect
to P is defined by:

dϕ(Q‖P ) ,





∫

Ω
ϕ(dQ/dP )dP, if Q� P,

+∞, else.

In particular, we will focus on ϕ-divergences which satisfy so-called coherence properties, studied
extensively by (Rockafellar, 2017). To this end, we make the following smoothness assumption
on ϕ in order to narrow the space of information divergences we consider.

Assumption 7.1.1 (Coherence). ϕ is a real-valued function satisfying:
• ϕ is convex and lower-semi-continuous.
• For all t > 0 we have ϕ(t) ≥ ϕ(1) = 0.
• ϕ is twice continuously differentiable at t = 1 with ϕ̇(1) = 0 and ϕ̈(1) > 0.

Common divergences associated to coherent functions includes for instance the Kullback-Leibler
and Chi-Square divergences, the Burg entropy and the squared Hellinger distance. We provide
in Table 1 their associated function ϕ and closed-form expressions for the divergences on the
simplex. Equipped with such definition, we will use the affiliated ambiguity sets:

Uϕε (P̂n) :=
{
P s.t dϕ(P‖P̂n) ≤ ε

}
.

One can note that a consequence of Definition 7.1.1 is that any P ∈ Uϕε (P̂n) must be absolutely
continuous w.r.t P̂n. Because P̂n has a finite support (it is supported by at most n atoms)
this directly implies that P has the same finite support - in others words both P̂n and any
P ∈ Uϕε (P̂n) live in ∆n, the n-dimensional simplex. In the following, we will therefore confuse
P̂n and P with their associated vectors in [0, 1]n which will be denoted by lower-case symbols -
for instance, pn := (1/n)1n and p ∈ ∆n.
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7.1.2 Asymptotic guarantees of generalized empirical likelihood estimators

We hereinafter present some asymptotic guarantees of mean estimators based on coherent ϕ-
divergences ambiguity sets. We will for now limit ourselves to blunt statements and their imme-
diate consequences; we leave the discussion to the following section, where we will investigate
their meanings under the lens of our original problem - i.e offline policy evaluation. All results
presented in this section are from Duchi et al. (2016).

Generalized empirical likelihood confidence interval. The first result concerns the de-
sign of confidence regions for means based on generalized empirical likelihood estimators.

Proposition 7.1.1 (Proposition 1 of Duchi et al. (2016)). Let ϕ a function satisfying Assump-
tion 7.1.1 and assume that z has a finite second-order moment. Let ρ > 0, ε = ϕ̈(1)ρ/(2n) and
y be a standard normal random variable. Then:

lim
n→∞P

(
ζ ∈

{
EP [z], P ∈ Uϕε

(
P̂n
)})

= P
(
y2 ≤ ρ

)
.

Proposition 7.1.1 namely asserts the following; if δ ∈ (0, 1] then by setting the ambiguity level to
ε = ρδ/n where ρδ := χ2

1,1−δ is the 1−δ chi-square quantile, we obtain an asymptotic confidence
interval for ζ with exact coverage 1− δ:

lim
n→∞P


ζ ∈

[
inf
Uε(P̂n)

EP [z], sup
Uε(P̂n)

EP [z]
]

 = 1− δ .

Remark (Alternative approach). While Proposition 7.1.1 aims to directly give a confidence
region for the mean ζ based on Uϕε (P̂n), an alternative strategy could be to control the probability
of the event P? ∈ Uϕε (P̂n) which can be done under mild assumptions. For instance, under the
assumption that P? has a finite support of cardinality m this can be done thanks to (Pardo,
2018, Corrolary 3.1) which asserts that the normalized empirical ϕ-divergence 2n

ϕ̈(1)dϕ(P?‖P̂n)
asymptotically follows a χ2

m−1 distribution. This would result in the asymptotic following 1−δ
confidence region for P?:

{
P s.t dϕ(P‖P̂n) ≤ ϕ̈(1)

2n χ2
m−1,1−δ

}

This yields an asymptotic confidence interval similar to the one presented in Proposition 7.1.1,
yet much larger and more restrictive because of the added dependency in m.

Variance sensitivity. The second result details the asymptotic behavior of the generalized
empirical likelihood confidence intervals, and ties it to the empirical variance of the sample-
average estimator.

Proposition 7.1.2 (Lemma 1 of Duchi et al. (2016)). Let ϕ a function satisfying Assump-
tion 7.1.1 and assume that z has a finite second-order moment. Let ρ > 0, ε = ρ/n and denote
s2
n := EP̂n [z2]− EP̂n [z]2. Then:

sup
P∈Uϕε (P̂n)

EP [z] = ζ̂n +
√
ρ

n
s2
n + ε+

n√
n
,

inf
P∈Uϕε (P̂n)

EP [z] = ζ̂n −
√
ρ

n
s2
n + ε−n√

n
.

where limn→∞ ε+
n = limn→∞ ε−n = 0 almost surely.
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7.2 Application to offline policy evaluation
We will now discuss how such guarantees can be applied to the offline policy evaluation task and
why they constitue good alternatives over baseline approaches. In all the following we let p̂n
represents the empirical distribution of the observed counterfactual costs {ωπ(xi, ai)c(xi, ai)}ni=1.
As discussed earlier, it will be confused with the n-dimensional vector (1/n)1n ∈ ∆n.

7.2.1 Asymptotic confidence interval on policy risk

Let us fix a policy π and let ϕ be a function satisfying Assumption 7.1.1. Define the upper
ε-distributionally robust risk of π as follows:

RobustRiskϕ, up
n (π, ε) := sup

p∈∆n

{
n∑

i=1
piω

π(xi, ai)c(xi, ai) s.t dϕ(p, p̂n) ≤ ε
}
, (7.1)

as well as its lower counterpart;

RobustRiskϕ, low
n (π, ε) := inf

p∈∆n

{
n∑

i=1
piω

π(xi, ai)c(xi, ai) s.t dϕ(p, p̂n) ≤ ε
}
. (7.2)

Note that in both Eqs. (7.1) and (7.2) the quantity ∑n
i=1 piω

π(xi, ai)c(xi, ai) is an expectation
w.r.t a distribution P , absolutely continuous w.r.t P̂n and therefore represented by its corre-
sponding vector p ∈ ∆n. Under the assumption that the counterfactual weights are bounded,
Proposition 7.1.1 applies to the random variable ωπ(x, a)c(x, a) and asserts that the following
interval is an asymptotic confidence region with coverage 1− δ:

Iϕn (π) :=
[
RobustRiskϕ, low

n

(
π,
εδ
n

)
, RobustRiskϕ, up

n

(
π,
εδ
n

) ]
,

where εδ = ϕ̈(1)χ2
1−δ/2. Furthermore, Proposition 7.1.2 informs us that this confidence interval

is sensitive to the empirical variance behind the policy π; for instance:

RobustRiskϕ, up
n (π, ε) = R̂IPS

n (π) +

√
ρs2
n(π)
n

+ o( 1√
n

) . (7.3)

As we discussed earlier, this is a particularly enjoyable feature for offline policy evaluation - this
alone was enough to motivate the use of empirical Bernstein based confidence intervals for the
CRM principle. We will investigate the use of Iϕn for policy optimization in Section 7.3. In
the rest of this section, we focus on the computation and the finite-sample performances of this
asymptotic confidence interval.

7.2.2 Computing the confidence interval

We now turn to the computation of the confidence interval Iϕn (π). We first focus on the upper-
bound RobustRiskϕ, up

n (π, ε) which requires finding the most pessimistic distribution inside the
ambiguity set:

arg max
p∈∆n

{
n∑

i=1
piω

π(xi, ai)c(xi, ai) s.t dϕ(p, p̂n) ≤ ε
}

(7.4)

Note that the objective is linear and therefore convex with respect to the optimization variable
p. Furthermore, the constraint set {p ∈ ∆n, dϕ(p, p̂n)} is convex. This makes Eq. (7.4) a convex
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program which can therefore be solved efficiently. The precise nature of the primal formulation
(e.g quadratic programming) depends on which function ϕ is used. Note that the primal can
be challenging to solve directly; its dimension is n, the size of the historical dataset Dn which is
likely to be prohibitively large. Therefore, we will essentially rely on the dual formulation; it is
easily solvable, even in regimes where n, the amount of data, is large. Formally, we rely on the
following result to characterize the robust risk. The notation ϕ? refers to the convex conjugate
of ϕ; it is formally defined ϕ?(s) := supt∈R(st − ϕ(t)). It can be computed in closed form for
many of the functions ϕ we consider - cf. Table 7.1. This robust program characterization can
be extracted from more general results - see for instance (Ben-Tal et al., 2013, Section 4).

Proposition 7.2.1. [Dual program for computing the robust risk] Define:

gπϕ(β, γ, ε) := β + γε+ 1
n

n∑

s=1
(γϕ)? (ωπ(xi, ai)c(xi, ai)− β) , (7.5)

where (γϕ)?(s) = γϕ?(s/γ), with the convention that (0ϕ)?(s) = +∞ if s > 0 and 0 otherwise.
For any π and ε ≥ 0 the function (β, γ) 7→ gπϕ(β, γ, ε) is convex and:

RobustRiskϕ, up
n (π, ε) = inf

β,γ≥0
gπϕ(β, γ, ε) . (7.6)

Proof. From the (upper) robust risk definition we obtain:

RobustRiskϕ, up
n (π, ε) = sup

p∈Qε

{
n∑

i=1
piω

π(xi, ai)c(xi, ai)
}

where the set of constraints is:

Qε :=
{
p ∈ Rn s.t

n∑

i=1
pi = 1, 1

n

n∑

i=1
ϕ(npi) ≤ ε, pi ≥ 0 for all i ∈ [n]

}
(7.7)

This program is convex; the objective is linear (henceforth convex) and the constraint set Qε is
convex by convexity of ϕ. Furthermore if ε > 0 then p̂n = (1/n)1n is strictly feasible. Therefore
Slater’s condition hold and the program enjoys strong duality. Writing down its Lagrangian, we
obtain the following equivalence:

RobustRiskϕ, up
n (π, ε) = sup

pi≥0
inf
β,γ≥0

n∑

i=1
piω

π(xi, ai)c(xi, ai) + β

(
1−

n∑

i=1
pi

)
+ γ

(
ε− 1

n

n∑

i=1
ϕ(npi)

)

= inf
β,γ≥0

sup
pi�0

n∑

i=1
piω

π(xi, ai)c(xi, ai) + β

(
1−

n∑

i=1
pi

)
+ γ

(
ε− 1

n

n∑

i=1
ϕ(npi)

)

= inf
β,γ≥0

β + γε+ 1
n

n∑

i=1
sup
pi≥0
{(npi)(ωπ(xi, ai)c(xi, ai)− β)− γϕ(npi)}

(7.8)

where the first equality is a consequence of strong duality, and the second is obtained through
simple re-arranging. If γ 6= 0, factorizing with γ and the change of variable pi ← npi lead to:

RobustRiskϕ, up
n (π, ε) = inf

β,γ≥0
β + γε+ γ

n

n∑

i=1
sup
pi≥0

{
pi
ωπ(xi, ai)c(xi, ai)− β

γ
− ϕ(pi)

}

= inf
β,γ≥0

β + γε+ γ

n

n∑

i=1
ϕ?
(
ωπ(xi, ai)c(xi, ai)− β

γ

)
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by using the definition of ϕ?. The precise limit conditions announced in Proposition 7.2.1 are
easily checked by computing the dual function when γ = 0. We therefore obtain the equality
announced by using the definition of gπε :

RobustRiskϕ, up
n (π, ε) = inf

β,γ≥0
gπε (β, γ)

The convexity of gπε can be obtained two ways; by noticing that gπε is obtained through convexity-
transforming transformations of a perspective function (Combettes, 2018), or by noticing thanks
to Eq. (7.8) that (β, γ) 7→ gπε (β, γ) is convex as a sum of supremum of linear (and hence convex)
functions. �

The main implication of Proposition 7.2.1 is that the robust risk can be efficiently computed by
solving a two-dimensional convex program. When n is reasonably small (e.g when the dataset
Dn fits in memory), coordinate descent (with exact line search) or two-dimensional bisection
provide efficient, principled tools for computing the robust risk. The program presented in
Eq. (7.6) is also well-suited for the large-data regime (e.g large n) as it naturally adapts to
stochastic optimization. Indeed, the function gπϕ is composite and unbiased gradients of this
objective are easily obtainable. Stochastic gradient descent methods therefore provide efficient
and flexible solutions for this problem (up to some mild modifications to account for the fact
that the g is not smooth for γ in a neighborhood of 0). A similar characterization of course
holds for RobustRiskϕ, low

n (π, ε) - the objective in Eq. (7.2) is a linear function of p and after
flipping the signs of the counterfactual weights the exact same reasoning can be conducted.

7.2.3 Numerical simulations

The generalized empirical likelihood confidence interval Iϕn are asymptotic and therefore might
fail in real-life scenarios where n is finite. In this section, we compare both its coverage and
width with the other risk confidence intervals we detailed in Section 6.2.2. For this empirical
evaluation we will work with each of the four ϕ-divergence presented in Table 7.1.

Methodology. To create a bandit dataset Dn, we follow Swaminathan and Joachims (2015a)
and employ the classical supervised to bandit conversion of Agarwal et al. (2014). Formally,
denote Dfull = {(x1, y1), . . . , (xM , yM )} a given supervised multi-label dataset (i.e with full in-
formation feedback) where x ∈ X is a feature vector and y ∈ {0, 1}L its associate label. The
logging policy π0 is obtained by training a linear softmax model on a fraction of Dfull. We then
create the historic data Dn by repeating P (the replay count) times the following procedure: for
every (xi, yi) ∈ Dfull, sample ai ∼ π0(x) and log the cost c(xi, ai) = ‖ai − yi‖1. The effective
size of the bandit dataset is therefore n = P |Dfull|. The policies which are up for evaluation are
also based on a linear softmax model, and are obtained by training over a random subset of
Dfull - however different from the subset used to obtain the initial π0. The confidence intervals
are computed by solving the dual formulation of Proposition 7.2.1 using scipy1 off-the-shelf
optimizer through the minimize procedure.

Results. We present in Figs. 7.1 and 7.2 the empirical coverage and width results when ap-
plying this methodology to two multi-label supervised dataset: the Yeast dataset and the Scene
dataset, both taken from the LibSVM repository and standard for the policy optimization task
(Swaminathan and Joachims, 2015a,b). The empirical coverage and confidence interval width
are reported for increasing values of the replay count P (or equivalently for increasing values of
the historic data size n) and aggregated over different random realizations of the bandit dataset

1https://www.scipy.org/index.html

https://www.scipy.org/index.html
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Figure 7.1: Empirical coverage and confidence interval width after a bandit conversion from the
Yeast dataset, as a function of the replay count P = n/|Dfull|. The generalized EL confidence
intervals Iϕn provide satisfactory coverage, close to the required 1−δ = 0.95 confidence level
required here. As often, the worst-case finite-time confidence intervals ICH

n and IEB
n over-cover

and are much wider than asymptotic counterparts.

Dn. We observe that for the policy evaluation task, the generalized empirical likelihood confi-
dence intervals Iϕn provide almost exact (1−δ) coverage and are therefore safe to use, even in
the small data regime. As a side comment, we observe that all four considered ϕ-divergence
lead to very similar empirical results. Finally, we can check experimentally that as expected,
those asymptotic confidence intervals are by orders of magnitude smaller than the worst-case,
finite-time ones such as ICH

n and IEB
n .

7.3 Distributionally robust policy optimization algorithms

We saw in the last section that generalized empirical likelihood confidence intervals provides a
trust-worthy alternative for confident policy evaluation. Also, one of their salient feature is to
produce a variance-sensitive confident upper-bound on the risk - the same characteristics which
motivated the use of the empirical Bernstein upper-bound for the CRM principle. With the
same rationale, we can therefore use these confidents intervals to design a new, distributionally
robust, offline policy optimization objective:

π̂n ∈ arg min
π

RobustRiskϕ, up
n (π, ε) , (DRO-CRM)

This section investigates the empirical benefits behind this alternative approach. First, we show
in Section 7.3.1 how it leads to obtain an exponential-weights version of the CRM objective, by
relying on an approximate closed form of the robust risk when defined by the Kullback-Leibler
divergence. This new objective displays improved empirical performances over the original
CRM objective; yet, it suffers from similar downsides (e.g non-convex, not suited for stochastic
optimization). We tackle such limitations in Section 7.3.2 by relying on the robust risk’s dual
formulation from Proposition 7.2.1. This gives rises to better behaved optimization objectives
and empirically superior policy optimization algorithms.
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Figure 7.2: Empirical coverage and confidence interval width after a bandit conversion from the
Scene dataset, as a function of the replay count P = n/|Dfull|. The generalized EL confidence
intervals Iϕn provide satisfactory coverage, close to the required 1 − δ = 0.95 confidence level
required here. As often, the worst-case finite-time confidence intervals ICH

n and IEB
n over-cover

and are much wider than asymptotic counterparts.

Remark (Equivalence with the original CRM objective). The asymptotic expansion of Eq. (7.3)
ensures that (DRO-CRM) and (CRM) are asymptotically equivalent, for any ϕ satisfying As-
sumption 7.1.1. Actually, this equivalence holds even non-asymptotically. Under mild condi-
tions, the robust risk generated by the Chi-Square divergence yields exactly the CRM objective
(Faury et al., 2020b, Lemma 3). Therefore, (DRO-CRM) can be understood as a strict gener-
alization of the (CRM) approach.

7.3.1 An approximation for Kullback-Leibler ambiguity sets

Kullback-Leibler robust risk. In this section, we are interested in the robust risk generated
by Kullback-Leibler divergence ambiguity sets, that is with ϕ1(t) = t log(t) − t + 1. For such
ambiguity sets, alternative characterization of the robust risk can easily be derived, which sub-
sequently yields a closed-form objective for offline policy optimization. Such a characterization
is made explicit in the following proposition, through exponential weights which re-balance the
original IPS objective.

Proposition 7.3.1 (Kullback-Leibler robust risk). If ϕ = ϕ1 then the robust risk writes:

RobustRiskϕ, up
n (π, ε) =

n∑

i=1
ωπ(xi, ai)c(xi, ai)

exp (ωπ(xi, ai)c(xi, ai)/γε)∑n
j=1 exp (ωπ(xj , aj)c(xj , aj)/γε)

, (7.9)

where the temperature γε is a solution of the fixed-point equation:

γ
n∑

i=1
exp (ωπ(xi, ai)c(xi, ai)/γ) =

∑n
i=1 ω

π(xi, ai)c(xi, ai) exp (ωπ(xi, ai)c(xi, ai)/γ)
ε+ log(∑n

i=1 exp (ωπ(xi, ai)c(xi, ai)/γ) /n) .

Proof. From Proposition 7.2.1 we have that:

RobustRiskϕ1, up
n (π, ε) = inf

γ≥0

{
γε+ inf

β

(
β + 1

n

n∑

i=1
(γϕ?)(ωπ(xi, ai)c(xi, ai)− β)

)}
.
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Straight-forward computation easily yield that ϕ?1(s) = es−1. Let us assume for now that γ > 0.
We then obtain:

RobustRiskϕ1, up
n (π, ε) = inf

γ≥0

{
γε+ inf

β

(
β + γ

n

n∑

i=1
ϕ?
(
ωπ(xi, ai)c(xi, ai)− β

γ

))}
.

Solving the inner minimization yields:

RobustRiskϕ1, up
n (π, ε) = inf

γ≥0

{
γε+ γ log

(
1
n

n∑

i=1
exp (ωπ(xi, ai)c(xi, ai)/γ)

)}
.

Solving this equation by differentiating the r.h.s and setting it to 0 indicates that the optimum
is a solution of the fixed-point equation stated in Proposition 7.3.1. Replacing it in the previous
line gives the announced closed form formula for the robust risk when ϕ = ϕ1. To conclude the
proof, we need to rule out the case γ = 0; this is done by computing the optimal value of the
objective in this case, which yields a larger quantity than when γ > 0. �

The identity given by Proposition 7.3.1 suggests the idea of an exponentially-weighted version of
the original CRM principle. Indeed one can consider the following policy optimization strategy:

π̂n ∈ arg min
π

{
n∑

i=1
ωπ(xi, ai)c(xi, ai)

exp (ωπ(xi, ai)c(xi, ai)/γ)∑n
j=1 exp (ωπ(xj , aj)c(xj , aj)/γ)

}
(KL-DRO-CRM)

where the temperature γ is treated as an hyper-parameter, which optimal value is to be deter-
mined through cross-validation. This strategy was followed in Faury et al. (2020b) and proves
to be competitive with the CRM objective. It however can be improved, by leveraging the fact
that one can obtain a good approximation of the optimal value γε, provided in the following
Lemma.

Lemma 7.3.1. The optimal value γε of the temperature can be approximated as follows:

γε ≈
√
s2
n(π)
2ε

Proof. It can be extracted from the proof of Proposition 7.3.1 that:

RobustRiskϕ1, up
n (π, ε) = inf

γ≥0

{
γε+ γ log

(
1
n

n∑

i=1
exp (ωπ(xi, ai)c(xi, ai)/γ)

)}
.

A second order asymptotic expansion around γ →∞ yields:

RobustRiskϕ1, up
n (π, ε) ≈ inf

γ≥0

{
γε+ R̂IPS

n + s2
n(π)
2γ

}
.

Solving this quadratic minimization yields the announced result. �

Algorithm. In light of Proposition 7.3.1, we propose to minimize the (KL-DRO-CRM) ob-
jective (e.g by an iterative algorithm) while maintaining a decent approximation of the optimal
temperature γε - as provided by Lemma 7.3.1. More precisely, at every step taken by an iter-
ative algorithm, the current approximation for γε is updated based on the current policy. We
illustrate this idea in Algorithm 9 with the Kullback-Leibler DRO equivalent of the POEM al-
gorithm with projected gradient descent. It remains to set the value of ε. For now, we treat as
an hyper-parameter, either set by the practitioner or determined through cross-validation.
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Algorithm 9 KL-DRO-CRM for exponential distribution with projected gradient descent
input: Parameter space Θ, ambiguity level ε, clipping constant M , optimization horizon T ,

learning rate α, initial parameter θ1, static bandit dataset Dn = {xi, ai, ci, p0
i }ni=1.

for t ∈ [1, T − 1] do
Compute likelihood scores:

{
pi(θt)← exp(θT

t φ(xi, ai))/
∑
a∈[K] exp(θT

t φ(xi, ai))
}n
i=1 .

Compute clipped propensity weights:
{
ωi(θt)← max(M,pi(θt)/p0

i )
}n
i=1.

Compute the empirical variance: s2
n(θt)← 1

n(n−1)
∑n
i=1(ωi(θt)ci − ωj(θt)cj)2 .

Compute the current temperature γε =
√
s2
n(θt)/(2ε).

Compute the KL robust risk:

RobustRiskϕ1, up
n (θt, ε) =

n∑

i=1
ωi(θt)ci

exp (ωi(θt)ci/γε)∑n
j=1 exp (ωi(θt)ci/γε)

Perform a gradient descent step:

θ̃t+1 ← θt − α∇θt (RobustRiskϕ1,up
n (θt, ε)) .

Project back to Θ: θt+1 ← arg minθ∈Θ‖θ − θ̃t+1‖2.
end for
return policy πθT .

Empirical evaluation. The methodology used to evaluate KL-DRO-CRM is similar to the
one detailed in Section 7.2.3 and follows the experimental procedure introduced in Swaminathan
and Joachims (2015a).2 A supervised multi-label dataset Dfull = {(x1, y1), . . . , (xM , yM )} where
y ∈ {0, 1}L is split into two parts Dtrain

full and Dvalid
full as follows: 75% goes to Dtrain

full and 25%
to Dvalid

full . We also assume that some test data Dtest
full is provided; it will serve for evaluation.

Following Swaminathan and Joachims (2015a), we use joint features maps φ(x, y) = xyT and
train a Conditional Random Field (Lafferty et al., 2001) (CRF) on a fraction (5%, randomly
constituted) of Dtrain

full . This CRF has access to the full supervised feedback and plays the role of
the logging policy π0. That is, for every x ∈ Dtrain

full , a label prediction a ∈ {0, 1}L is sampled from
the CRF with probability π0(x, a). The quality of this prediction is measured through the cost
c = ‖a− y‖1. The logged bandit dataset is generated by running π0 through Dtrain

full for P times.
We train exponential policies with features φ(x, y) = xyT. After training, the performances
of the policy π̂n returned by the different algorithms are reported as their expected Hamming
loss on the held-out set D?test. Every experiment is run 20 times with a different random seed
(which controls the random training fraction for the logging policy and the creation of the bandit
dataset). For each dataset we consider (Scene, Yeast, RCV1-Topics and TMC2009, all taken
from the LibSVM library) we compare our algorithm with the naive IPS-based approach and
the POEM algorithm. For all algorithms, the numerical optimization routine is deferred to
the L-BFGS algorithm, which we found to work best in practice. The clipping constant M is
systematically set to the ratio of the 90%ile to the 10%ile of the propensity scores observed in
the logged dataset Dn. Remaining hyper-parameters (λ for POEM and ε for KL-DRO-CRM)
are selected by cross-validation based on the smallest value IPS estimator on Dvalid

full . We also
report the performance of the logging policy π0 on the test set as an indicative baseline measure,

2It is well known that experiments in the field of counterfactual reasoning are highly sensitive to differences
in datasets and implementations. To ensure fair comparison, we use the code provided by Swaminathan and
Joachims (2015a), available on the authors’ website.
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Scene Yeast RCV1-Topics TMC2009
π0 1.529 5.542 1.462 3.435
IPS 1.163 4.658 0.930 2.776

POEM 1.157 4.535 0.918 2.191
KL-DRO-CRM 1.128 4.553 0.783 2.126

CRF 0.646 2.817 0.341 1.187

Table 7.2: Expected risk of the policy π̂n returned by the different algorithms, evaluated on Dtest
full

and averaged over 20 independent runs. Bold font indicates that one or several algorithms are
statistically better than the rest, according to a one-tailed paired difference t-test at significance
level of 0.95. KL-DRO-CRM is significantly better than its competitors on three out of four
datasets, and is competitive with POEM on the last dataset.

and the performance of a skyline CRF trained on the whole supervised dataset, despite its unfair
advantage. In Table 7.2 we report performances in terms of the risk of the returned policies,
evaluated on the test dataset Dtest

full . These results highlights that KL-DRO-CRM is a valuable
alternative to POEM. For further evaluation, we also report in Table 7.3 the risk of the greedy
version of the policies π̂n; that is:

π̂∞n (x) := arg max
a∈[K]

{
exp

(
θ̂T
nφ(x, a)

)}

The reason for this evaluation is that π̂∞n is much easier to deploy in a real-life situation, as
it doesn’t require the evaluation of the normalizing constant in Eq. (6.9). The superiority of
KL-DRO-CRM is also confirmed in this context, with a greater performance gap over POEM
than in the non-greedy evaluation of Table 7.2.

Scene Yeast RCV1-Topics TMC2009
IPS 1.163 4.369 0.929 2.774

POEM 1.157 4.261 0.918 2.190
KL-DRO-CRM 1.128 4.271 0.779 2.034

Table 7.3: Expected risk of the policy π̂∞n returned by the different algorithms, evaluated on Dtest
full

and averaged over 20 independent runs. Bold font indicates that one or several algorithms are
statistically better than the rest, according to a one-tailed paired difference t-test at significance
level of 0.95. KL-DRO-CRM is significantly better than its competitors on three out of four
datasets, and is competitive with POEM on the last dataset.

Further examination of the performance of KL-DRO-CRM requires inspecting its sample ef-
ficiency. In Fig. 7.3 we display the expected risk of π̂n (returned by either KL-DRO-CRM or
POEM) as a function of the replay count P , which directly controls the size of the bandit dataset
Dn. As expected given the asymptotical equivalence of the two approaches, KL-DRO-CRM and
POEM are equivalent for large values of P (i.e n � 1). For smaller P and smaller bandit
datasets, we notice that KL-DRO-CRM outperforms POEM by a significant margin.

Limitations. Despite displaying enjoyable empirical performances, this approach suffers from
similar limitation as the original CRM approach. Indeed, the (DRO-CRM) objective is also
non-convex w.r.t the policy π and is not composite (i.e does not undergoes classical stochastic
optimization strategies). Overcoming such downsides is the goal of the following section.
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Figure 7.3: Risk of the policy π̂n returned by KL-DRO-CRM and POEM, as a function of the
replay count P , evaluated on Dtrain

full . Error bars represent one standard deviation of the risk
aggregated over 20 random realization of the logging dataset. The replay count directly impacts
the size n of the bandit dataset Dn since n = P × |Dtrain

full |. As predicted by Proposition 7.1.2,
the two approaches are nearly equivalent for large values of n; however, KL-DRO-CRM seems
to over-perform POEM for small logged dataset, by yielding policies of much smaller risk.

7.3.2 Robust policy optimization for coherent f-divergences

Training objective. The leading idea to obtain better-behaved policy optimization objectives
is to leverage the general characterization of the robust risk from Proposition 7.2.1, and to solve
for the confident upper-bound and the optimal policy jointly. In other words, we optimize jointly
the following objective over the policy π and the dual variables β, γ:

π̂n ∈ arg min
π,β,γ≥0

{
gπϕ(β, γ, ε) = β + γε+ 1

n

n∑

s=1
(γϕ)? (ωπ(xi, ai)c(xi, ai)− β)

}
. (ϕ-DRO-CRM)

Note that this objective is composite and its stochastic gradients can easily be obtained; fur-
thermore, it is convex in π, β and γ jointly.

Proposition 7.3.2. The function (π, β, γ)→ gπϕ(β, γ, ε) is convex.

Proof. From the proof of Proposition 7.2.1 it can be extracted that:

gπϕ(β, γ, ε) = β + γε+ 1
n

n∑

i=1
sup
pi≥0
{(npi)ωπ(xi, ai)c(xi, ai)− γϕ(npi)} .

Remembering that ωπ is linear in π yields that gπϕ(β, γ, ε) is a sum of a linear function and a
supremum over linear functions - and therefore is convex. �

The takeaway from Proposition 7.3.2 is that the (ϕ-DRO-CRM) objective can be minimized
in principled ways - while enjoying similar guarantees as the original CRM objective, thanks
to Propositions 7.1.1 and 7.1.2. Intuitively, one can expect such an important transformation
of the optimization properties of the policy improvement objective to lead to greater prac-
tical performances. The most natural way to solve this new policy improvement objective
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is through plain gradient descent. Indeed, a valid strategy consists in feeding gradients of
the function (β, γ, π) → gπ(β, γ) to a gradient optimizer. As for the policy evaluation, the
(ϕ-DRO-CRM)objective is particularly adapted when the historic data is large (i.e n � 1)
and only stochastic gradients can be processed. Note that stochastic gradients methods might
encounter some issues (linked to the possible unboundedness of the gradients) which can be
alleviated thanks to specialized methods based on mirror descent (Namkoong and Duchi, 2016).
We found in our experiments that such problem did not arise in practice.

Remark 7.3.1 (Loss of convexity for parametrized policies). As anticipated in Remark 6.3.2,
we rarely directly optimize over all policies; rather, it is more usual to tie the space of candidate
policy to a given parametrization πθ, and optimize over the parameter θ. Unfortunately, this
might break the convexity of the (ϕ-DRO-CRM) objective, as θ → c(x, a)ωπθ(x, a) is rarely
a convex function of θ. We argue that the resulting optimization objective still improves over
POEM, which was already highly non-convex w.r.t π because of the square root empirical variance
term. The empirical results to come confirms this intuition. We will also discuss in Section 7.3.3
how to achieve fully convex off-line policy optimization objectives for policies which are log-
concave w.r.t their parametrization θ.

Hyper-parameters. Through its desirable optimization properties, the (ϕ-DRO-CRM) ob-
jective solves two major limitations of the original (CRM) objective. Remains the issue of hyper-
parameter tuning; the ambiguity size ε remains to be determined, either by cross-validation or
by resorting to an heuristic rule. In an attempt to circumvent all of POEM’s limitation alto-
gether, on can use the value recommended by the asymptotical analysis: ε = ϕ̈(1)χ2

1,1−δ/(2n)
for a given value of the failure level δ. We will follow this idea in the experimental section to
come.

Empirical evaluation. We repeat the same methodology as in Section 7.3.1, and report
experiments illustrating the appealing empirical performances of ϕ-DRO-CRM algorithms3. We
report in Fig. 7.4 the expected risk of the policies π̂n returned by ϕ-DRO-CRM, as well as
their greedy versions π̂∞n for the four f -divergences listed in Table 7.1. As anticipated in the
previous paragraph, one major difference here is that we no longer use cross-validation to set ε,
but rather use the value recommended by the asymptotic analysis. Therefore, Dvalid

full is not used
by ϕ-DRO-CRM, but only by POEM to select its parameter λ by cross-validation. While this
gives a de-facto advantage to POEM, we found this strategy to work quite well and still allows
for ϕ-DRO-CRM to be competitive with POEM. We report result for batch (suffix -b) and
stochastic (suffix -s) implementation of the algorithms. For batch implementations, we defer
the optimization routine to L-BFGS. For stochastic implementations, we use the Adam optimizer
(Kingma and Ba, 2014) with default configuration and a batch size of 32 samples. In the batch
case, one can notice that DRO-based methods provide either similar or better empirical results
than POEM on all considered datasets, while being hyper-parameter free (which, again, is not
the case of POEM). On the Yeast dataset, the improvement is quite significative for two of the
four f -divergence (Burg and Hellinger). On the negative side, it seems there is no consistency
in the relative performance of the different divergences. This is quite troublesome in practice,
as to the best of our knowledge there is no obvious nor preferable choice of divergences given
a dataset. A solution to this problem is probably to cross-validate this choice, potentially over
a continuous parametrization of the divergence considered here (such as the parameter of a
Cressie-Read divergence). Finally, we note that POEM-s dominates among the all stochastic

3The results for POEM are different than those listed in Tables 7.2 and 7.3 because both experiments were
run with different logging policies.
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Algorithm Risk(π̂n) Risk(π̂∞n )
POEM-b 0.93 (0.06) 0.91 (0.06)

ϕ-DRO-CRM-b
ϕ1 0.90 (0.06) 0.88 (0.06)
ϕ2 0.89 (0.06) 0.87 (0.06)
ϕ3 1.06 (0.06) 0.85 (0.05)
ϕ4 1.06 (0.06) 0.85 (0.05)

POEM-s 1.0 (0.05) 0.97 (0.05)
ϕ-DRO-CRM-s

ϕ1 1.06 (0.07) 1.04 (0.07)
ϕ2 1.05 (0.06) 1.02 (0.06)
ϕ3 1.12 (0.05) 1.08 (0.05)
ϕ4 1.3 (0.08) 1.18 (0.07)

(a) Scene dataset.

Algorithm Risk(π̂n) Risk(π̂∞n )
POEM 5.15 (0.07) 4.34 (0.13))

ϕ-DRO-CRM-b
ϕ1 5.32 (0.04) 5.29 (0.11))
ϕ2 5.17 (0.06) 4.71 (0.11)
ϕ3 5.07 (0.07) 4.24 (0.13)
ϕ4 5.09 (0.07) 4.27 (0.13)

POEM-s 5.16 (0.05) 4.62 (0.1)
ϕ-DRO-CRM-s

ϕ1 5.17 (0.06) 4.72 ( 0.12)
ϕ2 5.17 (0.06) 4.71 (0.11)
ϕ3 5.17 (0.06) 4.72 (0.1
ϕ4 5.27 (0.06) 4.71 (0.1)

(b) Yeast dataset.

Figure 7.4: Empirical comparison between POEM and ϕ-DRO-CRM on the Yeast and Scene
datasets. The suffix -b (resp. -s) refer to batch implementation (resp. stochastic). We evaluate
ϕ-DRO-CRM for the four f -divergence listed in Table 7.1. On both datasets, ϕ-DRO-CRM-b
matches or improves POEM-b, while being hyper-parameter free. The stochastic version man-
ages to be competitive with POEM-s, despite the latter being not a fully stochastic algorithm
- it needs to periodically go through the entire bandit dataset.

algorithms considered. This is however to be nuanced, as this algorithm still needs to load in
memory the entire dataset at every epoch (e.g. every time an upper-bound on the true objective
is constructed). This is not the case for DRO-based algorithms. We also postulate that the
nonetheless good performances reported here for stochastic DRO algorithms can be decisive
when considering more complex policies (e.g parametrized by a neural network, where POEM-S
have been reported to fail).

7.3.3 Extensions

In the following, we discuss how different estimators can be used and robustified in the same way
as the IPS, for improved performances or additional guarantees - however without sacrificing
convexity.

Variance reduction The methods presented so far rely on the vanilla IPS estimator. As
discussed in Section 6.2.1, it can suffer from large variance leading to a degradation of its per-
formances.. It is therefore natural to investigate whether the DRO approach could be applied to
estimators that actively reduce variance. A logical candidate for this task is the self-normalized
importance sampling estimator described in Eq. (6.5). This estimator is unfortunately not
convex in π, which goes against the efforts undertaken in so far to maintain well-behaved op-
timization tasks. A simple alternative consist in using a additive control variate (instead of a
multiplicative one). The resulting estimator writes:

R̂CV
n,ρ(π) = 1

n

n∑

i=1
(c(xi, ai)− ρ)ωπ(xi, ai) + ρ .

A robust version of this estimator easily follows, and enjoys the same convex properties of the
IPS robust risk. The variance-reduction property of the additive control variate are well-known
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and extensively described in the litterature - c.f (Owen, 2013) for a review. We recall them in
the following Lemma.

Lemma 7.3.2. [Propensity weights as an additive control variate] For all ρ, R̂CV
n,ρ(π) is an

unbiased estimator of Risk(π), achieving a better variance than naive IPS whenever:

0 ≤ ρ ≤ 2Cov(`π, ωπ)
Var(ωπ) .

In addition, if the cost is independent of the propensity weights, we obtain ρ∗ = E[c].

In practice, we do not know how to derive the optimal (in terms of variance reduction) coefficient
ρ∗ analytically; however as hinted by the last statement in Lemma 7.3.2, one can directly use
the cost’s empirical mean under π0 as a first approximation. Finally, robust estimators can be
directly coupled with the doubly robust approach laid out in Eq. (6.4); this allows to leverage
context/actions dependent control variates in a straight-forward fashion, for improved variance
reduction.

Parametric policies. This paragraph echoes Remark 7.3.1, where we discuss the break in
convexity of the (ϕ-DRO-CRM) objective that arise when parametrizing the policy space. We
discuss here how to alleviate this issue when policies are log-concave - e.g exponential policies
laid out in Eq. (6.9). In this case, the objective becomes a negative sum of log-concave functions
(negative because of Assumption 6.1.2 which yields c(x, a) ≤ 0) resulting in a non-convex opti-
mization objective. Following (Roux, 2017), one can bypass this non-convexity by constructing
a tight convex upper bound of the original objective.

Lemma 7.3.3. [Convex upper-bound for log-concave policies] Let πθ be a log-concave (w.r.t θ)
policy. For a given θ0, let:

R̂UP
n (πθ) = 1

n

n∑

i=1

πθ0(ai, xi)
π0(ai, xi)

(1 + log[ πθ(ai, xi)
πθ0(xi, ai)

])c(xi, ai) .

R̂UP
n (πθ) is a convex upper bound of the IPS risk. The closer θ0 to θ, the tighter the upper bound,

with equality at θ0 = θ.

The main take-away from Lemma 7.3.3 is that one can build a convex proxy of the original
objective, through an iterative procedure that only uses convex losses throughout the whole
optimization process. Once again, we can build a robust version of this estimator which can be
efficiently optimized. Note that here, the robust estimator will be convex w.r.t the parametriza-
tion θ as soon as the policy is log-concave.
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Conclusion

The goal of this chapter is to provide a brief summary of our contributions to offline policy
evaluation and learning. We then identify potential directions for future work, and finally
discuss some concurrent and similar work and their ties to our approach.

Brief summary. The learning from logged bandit feedback problem presents a salient diffi-
culty compared to the classical supervised setting, for the same estimator applied to different
policies can have vastly disparate variance. Motivated by recent progress in the generalized
empirical likelihood and distributionally robust optimization literature, we first propose to use
new asymptotic confidence intervals for offline policy evaluation. This is mainly motivated by
their variance sensitivity properties, which allows for reasonably tight policy-dependent bounds.
We demonstrate empirically that despite being asymptotic, these confidence intervals are sound
to use even for finite sample sizes. We also investigate their relevance for offline policy opti-
mization. In this context, they lead to a generalization of the CRM principle, a state-of-the-art
procedure for this task. Our formulation leads to a variety of different objectives for offline
policy optimization. We describe in Section 7.3.1 an exponential-weight version of the original
CRM objective that arises from a particular configuration of our approach, and shows that it
over-performs the original formulation. In Section 7.3.2 we also show that our approach leads
to sounder policy optimization schemes - from an optimization perspective. Indeed, they yield
convex objectives which easily undergo stochastic optimization. The former allows for principle
minimization, while the latter is much needed in virtually all practical instances, where the size
of logged interactions typically prohibit batch strategies.

Future work. The experimental results reported in Section 7.3.2 are mostly illustrative; a
natural direction for future work involves an exhaustive evaluation of DRO-based method for
policy optimization. This could also be the occasion to investigate the practical impact of
the extensions we discussed in Section 7.3.3. A major difficulty for achieving such task comes
from the well-known instability of comparing offline policy optimization methods; results are
highly implementation-dependent, as little changes to the logging policy often leads to sensibly
different conclusions. We are convinced that further research on the topic could highly benefit
from controlled and standardized learning environments - such as the ones that exist for online
reinforcement learning. There have been recent efforts in that direction (Rohde et al., 2018),
yielding some good candidates for such an environment.

Recent related work. Concurrently with our contributions to this topic appeared several
closely related works, leveraging similar ideas either in the contextual bandit or reinforcement
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learning setting. For contextual bandits, Karampatziakis et al. (2020) design a new counterfac-
tual estimator, based on the empirical likelihood principle with reverse Kullback-Leibler diver-
gence and with an additional weight constraint. They derive a novel confidence interval for this
estimator, analogous to ours (which are tailored for the IPS) and with identical coverage guaran-
tees. Similarly, they report satisfactory empirical coverage for their confidence interval despite
being only asymptotical. Alike the rationale presented in this manuscript, they derive a policy
optimization objective based on this confidence interval. Dai et al. (2020) apply similar tools
as the ones presented in this dissertation, however in a reinforcement learning setting. In many
ways, their approach is a generalization of ours to this more challenging problem - up to one
major difference; in their formulation, perfect knowledge about the logger π0 is not required.
Furthermore, they also provide finite-sample guarantees for generalized empirical likelihood-
based confidence intervals, henceforth bringing theoretical confirmation of their relevance for
real-word problems.
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Appendix

A Concentration inequalities
In this section, we remind some basic definitions and concentrations results. The proofs are
standard and therefore omitted here for the sake of conciseness.

Definition A.1 (Convergence in distribution). A sequence of real-valued random variable (X1, . . . , Xn)
is said to converge in distribution to a random variable X if limn→∞ Fn(x) = F (x) at every x
where F is continuous, where Fn and F are the cumulative distribution functions of Xn and X,
respectively.

In what follows convergence in distribution of Xn to X will be denoted Xn
d→ X. We also use

the notation X̄n := n−1∑n
i=1Xi.

Theorem A.1 (Central Limit Theorem). Let X1, . . . , Xn be i.i.d random variables such that
E[X2

i ] < +∞, with mean µ and variance σ2. Then:
√
n

σ

(
X̄n − µ

) d→ Z

where Z is a standard Gaussian random variable.

By denoting Φ the cumulative distribution function of a standard Gaussian random variable one
easily obtains the following result, providing an asymptotic confidence interval for the mean µ:

Lemma A.1 (Asymptotic confidence interval). Let X1, . . . , Xn be i.i.d random variables such
that E[X2

i ] < +∞, with mean µ and variance σ2. For δ ∈ (0, 1]:

lim
n→∞P

(∣∣∣X̄n − µ
∣∣∣ ≤ − σ√

n
Φ−1(δ/2)

)
≥ 1− δ

A similar result exists when the variance σ2 is unknown and involves the empirical variance
s2
n := 1

n−1
∑n
i=1X

2
i − X̄2

n. The central limit theorem is classically extended by replacing σ by
sn thanks to Slutsky’s lemma; cf. (Van der Vaart, 2000, Section 2.9). This leads to a similar
asymptotic confidence interval.

Lemma A.2 (Asymptotic confidence interval with empirical variance). Let X1, . . . , Xn be i.i.d
random variables such that E[X2

i ] < +∞, with mean µ. For δ ∈ (0, 1]:

lim
n→∞P

(∣∣∣X̄n − µ
∣∣∣ ≤ − sn√

n
Φ−1(δ/2)

)
≥ 1− δ
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We now make a few remainders on finite-time concentration inequalities. Below we give one
definition (there exists many equivalent ones) of a sub-gaussian random variable.

Definition A.2 (Sub-gaussian random variable). A real-valued random variable X is said to
be sub-gaussian if there exists σ > 0 such that for all λ ∈ R;

E [exp(λX)] ≤ exp(λ2σ2/2)

In particular, it can be easily shown that bounded random variables are sub-gaussian.

Lemma A.3 (Hoeffding’s lemma). Let X be a real-valued random variable and a, b ∈ R such
that X ∈ [a, b] almost surely. Then X is sub-gaussian with proxy-variance σ = (b− a)2/4:

E [exp(λX)] ≤ exp
(
λ2(b− a)2/8

)
∀λ ∈ R

This bound on the moment-generating function can be leveraged along with Markov’s inequal-
ity to derive finite-time concentration inequalities over sums (or means) of bounded random
variables.

Lemma A.4 (Chernoff-Hoeffding’s concentration inequality for bounded r.v.). Let a, b ∈ R and
µ ∈ R. Let (X1, . . . , Xn) be independent bounded random variables such that Xi ∈ [a, b] and
E[Xi] = µ for all i ∈ [n]. Then for all ε > 0:

P
(

1
n

n∑

i=1
Xi ≥ µ+ ε

)
≤ exp

(
− 2nε2

(b− a)2

)

Equivalently for any δ ∈ (0, 1]:

P


 1
n

n∑

i=1
Xi ≤ µ+ |b− a|

√
log(1/δ)

2n


 ≥ 1− δ

The same results hold for the left tail of 1
n

∑n
i=1Xi. This concentration inequality can be refined

if one has knowledge of the variance of the random variables.

Lemma A.5 (Bernstein’s inequality for bounded random variables). Let b ∈ R+ and µ ∈ R.
Let (X1, . . . , Xn) be independent bounded random variables such that E[Xi] = µ and |Xi−µ| ≤ b
almost surely for all i ∈ [n]. Then for all ε > 0:

P
(

1
n

n∑

i=1
Xi ≥ µ+ ε

)
≤ exp

(
− n2ε2/2∑n

i=1 σ
2
i + bnε/3

)

where σ2
i := Var(Xi) for all i ∈ [n]. As a consequence, for δ ∈ (0, 1]:

P


 1
n

n∑

i=1
Xi ≤ µ+ 2b

3n log(1/δ) +

√
2 log(1/δ)

n2

√√√√
n∑

i=1
σ2
i


 ≥ 1− δ

Again, similar results hold for the left tail. When the actual variances {σi} are unknown, they
can be replaced by their empirical counterpart.
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Lemma A.6 (Empirical Bernstein inequality, (Maurer and Pontil, 2009, Theorem 3)). Let
b ∈ R+ and µ ∈ R. Let (X1, . . . , Xn) be i.i.d random variables such that E[Xi] = µ and
|Xi − µ| ≤ b almost surely for all i ∈ [n]. Then for all δ ∈ (0, 1]:

P


 1
n

n∑

i=1
Xi ≤ µ+ 7b

3(n− 1) log(2/δ) +

√
2 log(2/δ)

n
s2
n


 ≥ 1− δ

B Technical lemmas
Lemma B.1. For all x ≥ 0, the following inequality holds:

1
x

(
1 + exp(−x)− 1

x

)
≥ 1

2 + x
.

Proof. It is easy to show that the claimed inequality holds if and only if exp(−x) ≥ (2− x)(2 +
x)−1. Let h(x) = (2 + x) exp(−x) − (2 − x). Easy computations yield that for all x we have
h′(x) = − exp(−x)(1 + x) + 1. Using the fact that exp(−x) ≤ (1 + x)−1 for all x ≥ 0 (derived
from ex ≥ 1 + x) we get that:

h′(x) ≥ −1 + x

1 + x
+ 1 = 0 .

The increasing nature of h on R+, along with the fact that h(0) = 0 is enough to show that
exp(−x) ≥ (2− x)(2 + x)−1 for all x ≥ 0. As laid out in the first lines of the proof, this suffices
to prove our claim. �

Proposition B.1 (Polynomial Inequality). Let b, c ∈ R+, and x ∈ R. The following implication
holds:

x2 ≤ bx+ c =⇒=⇒=⇒ x ≤ b+
√
c

Proof. Let f : x→ x2 − bx− c. Then f is a strongly-convex function which roots are:

λ1,2 = 1
2(b±

√
b2 + 4c)

If x2 ≤ −b− c then by convexity of f we obtain:

x ≤ max(λ1, λ2)

≤ 1
2(b+

√
b2 + 4c)

≤ b+
√
c (

√
x+ y ≤ √x+√y, ∀x, y ≥ 0)

�

The following theorem is extracted from (Abbasi-Yadkori et al., 2011, Lemma 10).

Lemma B.2 (Determinant-Trace inequality). Let {xs}∞s=1 a sequence in Rd such that ‖xs‖ ≤ X
for all s ∈ N, and let λ be a non-negative scalar. For t ≥ 1 define Vt := ∑t−1

s=1 xsx
T
s + λId. The

following inequality holds:

det(Vt+1) ≤
(
λ+ (t− 1)X2/d

)d



Appendix 167

We need a variation of the Elliptical Potential Lemma (Abbasi-Yadkori et al., 2011, Lemma
11) adjusted to handle (increasing) time-varying regulations.

Lemma B.3 (Elliptical potential with time varying regularization.). Let {xs}∞s=1 a sequence in
Rd such that ‖xs‖ ≤ X for all s ∈ N. Further let {λs}∞s=0 be an increasing sequence in R+ s.t
λ1 ≥ 1. For t ≥ 1 define Vt := ∑t−1

s=1 xsx
T
s + λtId. Then:

T∑

t=1
‖xt‖2V−1

t
≤ 2dmax(1, X2/λ1) log

(
λT /λ1 + TX2

λ1d

)

Proof. By definition of Vt:

|Vt+1| =
∣∣∣∣∣
t−1∑

s=1
xsx

T
s + xtx

T
t + λtId

∣∣∣∣∣

≥
∣∣∣∣∣
t−1∑

s=1
xsx

T
s + xtx

T
t + λt−1Id

∣∣∣∣∣ (λt ≥ λt−1 > 0)

=
∣∣∣Vt + xtx

T
t

∣∣∣

≥ |Vt|
∣∣∣Id + V−1/2

t xtx
T
t V−1/2

t

∣∣∣

= |Vt|
(
1 + ‖xt‖2V−1

t

)

and therefore by taking the log on both side of the equation and summing from t = 1 to T :

T∑

t=1
log

(
1 + ‖xt‖2V−1

t

)
≤

T∑

t=1
log |Vt+1| − log |Vt|

= log
(det(VT+1)

det(λ1Id)

)
(telescopic sum)

= log (det(VT+1)) (λ1 = 1)

≤ d log
(
λT + TX2

d

)
(Lemma B.2)

Remember that for all x ∈ [0, 1] we have the inequality log(1 + x) ≥ x/2. Also note that
‖xt‖2V−1

t
≤ X2/λ. Therefore:

d log
(
λT + TX2

d

)
≥

T∑

t=1
log

(
1 + ‖xt‖2V−1

t

)

≥
T∑

t=1
log

(
1 + 1

max(1, X2/λt)
‖xt‖2V−1

t

)

≥ 1
2 max(1, X2/λ1)

T∑

t=1
‖xt‖2V−1

t

which yields the announced result. �
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Résumé : Cette thèse présente des contributions
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de confiance sensibles à la variance. Nous traitons
deux aspects distincts du problème: (1) la minimi-
sation du regret pour les bandits à modèle linéaire
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timisation de politique hors ligne sous signal ban-
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tion la compréhension actuelle selon laquelle des
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Des algorithmes améliorés suivis d’une nouvelle
méthode d’analyse montre que si correctement ma-
nipulé, le problème de minimisation du regret dans
les GLBs n’est pas nécessairement plus dur que
pour leur contrepartie linéaire. Il peut même être si-

gnificativement facilité pour certains membres impor-
tants de la famille GLB comme le bandit logistique.
Notre approche utilise de nouveaux ensembles de
confiance sensibles à la non-linéarité au travers de la
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compagnés d’un traitement local de la non-linéarité au
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nant (2) nous utilisons des résultats de la littérature
de l’optimisation robuste afin de construire des in-
tervalles de confiance asymptotiques sensibles à la
variance pour l’évaluation contrefactuel de politiques.
Cela permet d’assurer du conservatisme (désirable
pour des agents averses au risque) lors de la re-
cherche hors-ligne de politiques prometteuses. Cet
interval de confiance engendre de nouveaux objec-
tifs contrefactuels qui sont plus adaptés à des appli-
cations pratiques, car convexes et de nature compo-
sites.
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Abstract : In this dissertation we present recent
contributions to the problem of optimization under
bandit feedback through the design of variance-
sensitive confidence intervals. We tackle two distincts
topics: (1) the regret minimization task in Generalized
Linear Bandits (GLBs), a broad class of non-linear pa-
rametric bandits and (2) the problem of off-line policy
optimization under bandit feedback. For (1) we study
the effects of non-linearity in GLBs and challenge the
current understanding that a high level of non-linearity
is detrimental to the exploration-exploitation trade-off.
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analysis that prove that if correctly handled, the regret
minimization task in GLBs is not necessarily harder
than for their linear counterparts. It can even be ea-

sier for some important members of the GLB family
such as the Logistic Bandit. Our approach leverages
a new confidence set which captures the non-linearity
of the reward signal through its variance, along with a
local treatment of the non-linearity through a so-called
self-concordance analysis. For (2) we leverage results
from the distributionally robust optimization framework
to construct asymptotic variance-sensitive confidence
intervals for the counterfactual evaluation of policies.
This allows to ensure conservatism (sought out by
risk-averse agents) while searching off-line for pro-
mising policies. Our confidence intervals lead to new
counterfactual objectives which, contrary to their pre-
decessors, are more suited for practical deployment
thanks to their convex and composite natures.
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